34 research outputs found
Quantifying the intrinsic amount of fabrication disorder in photonic-crystal waveguides from optical far-field intensity measurements
Residual disorder due to fabrication imperfections has important impact in
nanophotonics where it may degrade device performance by increasing radiation
loss or spontaneously trap light by Anderson localization. We propose and
demonstrate experimentally a method of quantifying the intrinsic amount of
disorder in state-of-the-art photonic-crystal waveguides from far-field
measurements of the Anderson-localized modes. This is achieved by comparing the
spectral range that Anderson localization is observed to numerical simulations
and the method offers sensitivity down to ~ 1 nm
Near-unity coupling efficiency of a quantum emitter to a photonic-crystal waveguide
A quantum emitter efficiently coupled to a nanophotonic waveguide constitutes
a promising system for the realization of single-photon transistors,
quantum-logic gates based on giant single-photon nonlinearities, and high
bit-rate deterministic single-photon sources. The key figure of merit for such
devices is the -factor, which is the probability for an emitted single
photon to be channeled into a desired waveguide mode. We report on the
experimental achievement of for a quantum dot
coupled to a photonic-crystal waveguide, corresponding to a single-emitter
cooperativity of . This constitutes a nearly ideal
photon-matter interface where the quantum dot acts effectively as a 1D
"artificial" atom, since it interacts almost exclusively with just a single
propagating optical mode. The -factor is found to be remarkably robust
to variations in position and emission wavelength of the quantum dots. Our work
demonstrates the extraordinary potential of photonic-crystal waveguides for
highly efficient single-photon generation and on-chip photon-photon
interaction
Cavity Quantum Electrodynamics with Anderson-localized Modes
A major challenge in quantum optics and quantum information technology is to
enhance the interaction between single photons and single quantum emitters.
Highly engineered optical cavities are generally implemented requiring
nanoscale fabrication precision. We demonstrate a fundamentally different
approach in which disorder is used as a resource rather than a nuisance. We
generate strongly confined Anderson-localized cavity modes by deliberately
adding disorder to photonic crystal waveguides. The emission rate of a
semiconductor quantum dot embedded in the waveguide is enhanced by a factor of
15 on resonance with the Anderson-localized mode and 94 % of the emitted
single-photons couple to the mode. Disordered photonic media thus provide an
efficient platform for quantum electrodynamics offering an approach to
inherently disorder-robust quantum information devices
Experimental realization of highly-efficient broadband coupling of single quantum dots to a photonic crystal waveguide
We present time-resolved spontaneous emission measurements of single quantum
dots embedded in photonic crystal waveguides. Quantum dots that couple to the
photonic crystal waveguide are found to decay up to 27 times faster than
uncoupled quantum dots. From these measurements -factors of up to 0.89
are derived, and an unprecedented large bandwidth of 20 nm is demonstrated.
This shows the promising potential of photonic crystal waveguides for efficient
single-photon sources. The scaled frequency where the enhancement is observed
is in excellent agreement with theory taking into account that the light-matter
coupling is strongly enhanced due to the significant slow-down of light in the
photonic crystal waveguide.Comment: 4 pages, 4 figures, submitted to PR
Ultrafast nonlocal control of spontaneous emission
Solid-state cavity quantum electrodynamics systems will form scalable nodes
of future quantum networks, allowing the storage, processing and retrieval of
quantum bits, where a real-time control of the radiative interaction in the
cavity is required to achieve high efficiency. We demonstrate here the dynamic
molding of the vacuum field in a coupled-cavity system to achieve the ultrafast
nonlocal modulation of spontaneous emission of quantum dots in photonic crystal
cavities, on a timescale of ~200 ps, much faster than their natural radiative
lifetimes. This opens the way to the ultrafast control of semiconductor-based
cavity quantum electrodynamics systems for application in quantum interfaces
and to a new class of ultrafast lasers based on nano-photonic cavities.Comment: 15 pages, 4 figure
Lower bound for the spatial extent of localized modes in photonic-crystal waveguides with small random imperfections
Light localization due to random imperfections in periodic media is paramount in photonics research. The group index is known to be a key parameter for localization near photonic band edges, since small group velocities reinforce light interaction with imperfections. Here, we show that the size of the smallest localized mode that is formed at the band edge of a one-dimensional periodic medium is driven instead by the effective photon mass, i.e. the flatness of the dispersion curve. Our theoretical prediction is supported by numerical simulations, which reveal that photonic-crystal waveguides can exhibit surprisingly small localized modes, much smaller than those observed in Bragg stacks thanks to their larger effective photon mass. This possibility is demonstrated experimentally with a photonic-crystal waveguide fabricated without any intentional disorder, for which near-field measurements allow us to distinctly observe a wavelength-scale localized mode despite the smallness (∼1/1000 of a wavelength) of the fabrication imperfections