72 research outputs found

    Comparison of the Atomic Oxygen Erosion Depth and Cone Height of Various Materials at Hyperthermal Energy

    Get PDF
    Atomic oxygen readily reacts with most spacecraft polymer materials exposed to the low Earth orbital (LEO) environment. If the atomic oxygen arrival comes from a fixed angle of impact, the resulting erosion will foster the development of a change in surface morphology as material thickness decreases. Hydrocarbon and halopolymer materials, as well as graphite, are easily oxidized and textured by directed atomic oxygen in LEO at energies of approx.4.5 eV. What has been curious is that the ratio of cone height to erosion depth is quite different for different materials. The formation of cones under fixed direction atomic oxygen attack may contribute to a reduction in material tensile strength in excess of that which would occur if the cone height to erosion depth ratio was very low because of greater opportunities for crack initiation. In an effort to understand how material composition affects the ratio of cone height to erosion depth, an experimental investigation was conducted on 18 different materials exposed to a hyperthermal energy directed atomic oxygen source (approx.70 eV). The materials were first salt-sprayed to provide microscopic local areas that would be protected from atomic oxygen. This allowed erosion depth measurements to be made by scanning microscopy inspection. The polymers were then exposed to atomic oxygen produced by an end Hall ion source that was operated on pure oxygen. Samples were exposed to an atomic oxygen effective fluence of 1.0x10(exp 20) atoms/sq cm based on Kapton H polyimide erosion. The average erosion depth and average cone height were determined using field emission scanning electron microscopy (FESEM). The experimental ratio of average cone height to erosion depth is compared to polymer composition and other properties

    Comparison of Atomic Oxygen Erosion Yields of Materials at Various Energy and Impact Angles

    Get PDF
    The atomic oxygen erosion yields of various materials, measured in volume of material oxidized per incident atomic oxygen atom, are compared to the commonly accepted standard of Kapton H (DuPont) polyimide. The ratios of the erosion yield of Kapton H to the erosion yield of various materials are not consistent at different atomic oxygen energies. Although it is most convenient to use isotropic thermal energy RF plasma ashers to assess atomic oxygen durability, the results can be misleading because the relative erosion rates at thermal energies are not necessarily the same as low Earth orbital (LEO) energies of approx.4.5 eV. An experimental investigation of the relative atomic oxygen erosion yields of a wide variety of polymers and carbon was conducted using isotropic thermal energy (approx.0.1 eV) and hyperthermal energy (approx.70 eV) atomic oxygen using an RF plasma asher and an end Hall ion source. For hyperthermal energies, the atomic oxygen erosion yields relative to normal incident Kapton H were compared for sweeping atomic oxygen arrival with that of normal incidence arrival. The results of isotropic thermal energy, normal incident, and sweeping incident atomic oxygen are also compared with measured or projected LEO values

    GENOMICS SYMPOSIUM: Using genomic approaches to uncover sources of variation in age at puberty and reproductive longevity in sows

    Get PDF
    Genetic variants associated with traits such as age at puberty and litter size could provide insight into the underlying genetic sources of variation impacting sow reproductive longevity and productivity. Genomewide characterization and gene expression profiling were used using gilts from the University of Nebraska–Lincoln swine resource population (n = 1,644) to identify genetic variants associated with age at puberty and litter size traits. From all reproductive traits studied, the largest fraction of phenotypic variation explained by the Porcine SNP60 BeadArray was for age at puberty (27.3%). In an evaluation data set, the predictive ability of all SNP from highranked 1-Mb windows (1 to 50%), based on genetic variance explained in training, was greater (12.3 to 36.8%) compared with the most informative SNP from these windows (6.5 to 23.7%). In the integrated data set (n = 1,644), the top 1% of the 1-Mb windows explained 6.7% of the genetic variation of age at puberty. One of the high-ranked windows detected (SSC2, 12–12.9 Mb) showed pleiotropic features, affecting both age at puberty and litter size traits. The RNA sequencing of the hypothalami arcuate nucleus uncovered 17 differentially expressed genes (adjusted P \u3c 0.05) between gilts that became pubertal early (180 d of age). Twelve of the differentially expressed genes are upregulated in the late pubertal gilts. One of these genes is involved in energy homeostasis (FFAR2), a function in which the arcuate nucleus plays an important contribution, linking nutrition with reproductive development. Energy restriction during the gilt development period delayed age at puberty by 7 d but increased the probability of a sow to produce up to 3 parities (P \u3c 0.05). Identification of pleotropic functional polymorphisms may improve accuracy of genomic prediction while facilitating a reduction in sow replacement rates and addressing welfare concerns

    The roles of age at puberty and energy restriction |in sow reproductive longevity: a genomic perspective

    Get PDF
    Approximately 50% of sows are culled annually with more than one-third due to poor fertility. Our research demonstrated that age at puberty is an early pre-breeding indicator of reproductive longevity. Age at puberty can be measured early in life, has a moderate heritability, and is negatively correlated with lifetime number of parities. Detection of age at puberty is tedious and time consuming and is therefore not collected by the industry, which limits genetic progress. Genomic prediction is a viable approach to preselect gilts that will express puberty early and have superior reproductive longevity. The hypothesis that genetic variants explaining differences in age at puberty also explain differences in sow reproductive longevity was tested. Phenotypes, genotypes, and tissues from the UNL resource population (n \u3e 1700) were used in genome-wide association analyses, genome, and RNA sequencing to uncover functional polymorphisms that could explain variation in puberty and reproductive longevity. A BeadArray including 56,424 SNP explained 25.2% of the phenotypic variation in age at puberty in a training set (n = 820). Evaluation of major windows and SNPs of subsequent batches of similar genetics (n = 412) showed that if all SNPs located in the major 1-Mb windows were tested, they explained a substantial amount of phenotypic variation (12.3 to 36.8%). Due to differences in linkage disequilibrium status, the most informative SNP from these windows explained a lower proportion of the variation (6.5 to 23.7%). To improve genomic predictive ability, the limited capability of BeadArray was enhanced by potential functional variants uncovered by genome sequencing of selected sires (n = 20; \u3e20X). There were 11.2 mil. SNPs and 2.9 mil. indels discovered across sires and reference genomes. The role of gene expression differences in explaining phenotypic variation in age at puberty was investigated by RNA sequencing of the hypothalamic arcuate nucleus (ARC) in gilts (n = 37) with different pubertal statuses. Seventy genes, including genes involved in reproductive processes, were differentially expressed between gilts with early and late puberty status (Padj \u3c 0.1). Dietary restriction of energy 3 mo before breeding delayed puberty by 7 d but improved the potential of a sow producing up to three parities (P \u3c 0.05). Energy restriction was associated with differential expression in 42 genes in the ARC, including genes involved in energy metabolism. This integrated genomic information will be evaluated in commercial populations to improve the reproductive potential of sows through genomic selection. This project is supported by AFRI Competitive grant no. 2013-68004-20370 from the USDA-NIFA. USDA is an equal opportunity provider and employer

    Laboratory and molecular surveillance of paediatric typhoidal Salmonella in Nepal: Antimicrobial resistance and implications for vaccine policy.

    Get PDF
    BACKGROUND: Children are substantially affected by enteric fever in most settings with a high burden of the disease, including Nepal. However pathogen population structure and transmission dynamics are poorly delineated in young children, the proposed target group for immunization programs. Here we present whole genome sequencing and antimicrobial susceptibility data on 198 S. Typhi and 66 S. Paratyphi A isolated from children aged 2 months to 15 years of age during blood culture surveillance at Patan Hospital, Nepal, 2008-2016. PRINCIPAL FINDINGS: S. Typhi was the dominant agent and comprised several distinct genotypes, dominated by 4.3.1 (H58). The heterogeneity of genotypes in children under five was reduced compared to data from 2005-2006, attributable to ongoing clonal expansion of H58. Most isolates (86%) were non-susceptible to fluoroquinolones, associated mainly with S. Typhi H58 lineage II and S. Paratyphi A harbouring mutations in the quinolone resistance-determining region (QRDR); non-susceptible strains from these groups accounted for 50% and 25% of all isolates. Multi-drug resistance (MDR) was rare (3.5% of S. Typhi, 0 S. Paratyphi A) and restricted to chromosomal insertions of resistance genes in H58 lineage I strains. Temporal analyses revealed a shift in dominance from H58 Lineage I to H58 Lineage II, with the latter being significantly more common after 2010. Comparison to global data sets showed the local S. Typhi and S. Paratyphi A strains had close genetic relatives in other South Asian countries, indicating regional strain circulation. Multiple imports from India of ciprofloxacin-resistant H58 lineage II strains were identified, but these were rare and showed no evidence of clonal replacement of local S. Typhi. SIGNIFICANCE: These data indicate that enteric fever in Nepal continues to be a major public health issue with ongoing inter- and intra-country transmission, and highlights the need for regional coordination of intervention strategies. The absence of a S. Paratyphi A vaccine is cause for concern, given its prevalence as a fluoroquinolone resistant enteric fever agent in this setting

    The Seroepidemiology of Haemophilus influenzae Type B Prior to Introduction of an Immunization Programme in Kathmandu, Nepal.

    Get PDF
    Haemophilus influenzae type b (Hib) is now recognized as an important pathogen in Asia. To evaluate disease susceptibility, and as a marker of Hib transmission before routine immunization was introduced in Kathmandu, 71 participants aged 7 months-77 years were recruited and 15 cord blood samples were collected for analysis of anti-polyribosylribitol phosphate antibody levels by enzyme-linked immunosorbent assay. Only 20% of children under 5 years old had levels considered protective (>0.15 ”g/ml), rising to 83% of 15-54 year-olds. Prior to introduction of Hib vaccine in Kathmandu, the majority of young children were susceptible to disease

    Municipal Corporations, Homeowners, and the Benefit View of the Property Tax

    Full text link

    Transcending Sovereignty: Locating Indigenous Peoples in Transboundary Water Law

    Full text link

    Impact of infection on proteome-wide glycosylation revealed by distinct signatures for bacterial and viral pathogens

    Get PDF
    Mechanisms of infection and pathogenesis have predominantly been studied based on differential gene or protein expression. Less is known about posttranslational modifications, which are essential for protein functional diversity. We applied an innovative glycoproteomics method to study the systemic proteome-wide glycosylation in response to infection. The protein site-specific glycosylation was characterized in plasma derived from well-defined controls and patients. We found 3862 unique features, of which we identified 463 distinct intact glycopeptides, that could be mapped to more than 30 different proteins. Statistical analyses were used to derive a glycopeptide signature that enabled significant differentiation between patients with a bacterial or viral infection. Furthermore, supported by a machine learning algorithm, we demonstrated the ability to identify the causative pathogens based on the distinctive host blood plasma glycopeptide signatures. These results illustrate that glycoproteomics holds enormous potential as an innovative approach to improve the interpretation of relevant biological changes in response to infection
    • 

    corecore