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GENOMICS SYMPOSIUM: Using genomic approaches to uncover sources  
of variation in age at puberty and reproductive longevity in sows1,2

H. R. Wijesena,* C. A. Lents,§ J.-J. Riethoven,† M. D. Trenhaile-Grannemann,*  
J. F. Thorson,§ B. N. Keel,§ P. S. Miller,* M. L. Spangler,* S. D. Kachman,‡ and D. C. Ciobanu*3

*Department of Animal Science, †Center for Biotechnology, and ‡Department of Statistics, University  
of Nebraska, Lincoln 68583; and §USDA, ARS, U.S. Meat Animal Research Center, Clay Center, NE, 689334

ABSTRACT: Genetic variants associated with traits 
such as age at puberty and litter size could provide 
insight into the underlying genetic sources of variation 
impacting sow reproductive longevity and productivi-
ty. Genomewide characterization and gene expression 
profiling were used using gilts from the University 
of Nebraska–Lincoln swine resource population (n = 
1,644) to identify genetic variants associated with 
age at puberty and litter size traits. From all reproduc-
tive traits studied, the largest fraction of phenotypic 
variation explained by the Porcine SNP60 BeadArray 
was for age at puberty (27.3%). In an evaluation 
data set, the predictive ability of all SNP from high-
ranked 1-Mb windows (1 to 50%), based on genetic 
variance explained in training, was greater (12.3 to 
36.8%) compared with the most informative SNP 
from these windows (6.5 to 23.7%). In the integrated 
data set (n = 1,644), the top 1% of the 1-Mb win-
dows explained 6.7% of the genetic variation of age 

at puberty. One of the high-ranked windows detected 
(SSC2, 12–12.9 Mb) showed pleiotropic features, 
affecting both age at puberty and litter size traits. The 
RNA sequencing of the hypothalami arcuate nucleus 
uncovered 17 differentially expressed genes (adjusted 
P < 0.05) between gilts that became pubertal early 
(<155 d of age) and late (>180 d of age). Twelve of 
the differentially expressed genes are upregulated in 
the late pubertal gilts. One of these genes is involved 
in energy homeostasis (FFAR2), a function in which 
the arcuate nucleus plays an important contribution, 
linking nutrition with reproductive development. 
Energy restriction during the gilt development period 
delayed age at puberty by 7 d but increased the prob-
ability of a sow to produce up to 3 parities (P < 0.05). 
Identification of pleotropic functional polymorphisms 
may improve accuracy of genomic prediction while 
facilitating a reduction in sow replacement rates and 
addressing welfare concerns.
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INTRODUCTION

Sow reproductive longevity, or number of litters pro-
duced by a sow during her lifetime, plays an important 
economic role in the swine industry. Sows that express 
puberty early in life, conceive, and farrow more than 3 
litters during their lifetime are more likely to recover the 
development and maintenance costs (Stalder et al., 2003; 
Tart et al., 2013). Selection for reproductive longevity 
is challenging due to its expression late in life and low 
heritability (Tart et al., 2013). Age at puberty was shown 
to be the earliest indicator of reproductive longevity. 
Specifically, early onset of puberty was associated with 
a greater probability of sows to produce multiple parities 
during their lifetime (Serenius and Stalder, 2006; Tart et 
al., 2013). However, determining the age at which a gilt 
expresses first estrus in commercial settings is impracti-
cal, because it is tedious and time consuming.

Age at puberty is characterized by a moderate to 
high heritability (mean h2 = 0.37 from 16 studies; re-
viewed by Bidanel, 2011) compared with other repro-
ductive traits such as litter size (mean h2 = 0.11 from 
118 studies; Bidanel, 2011) or reproductive longevity 
(h2 = 0.04; Tart et al., 2013). We hypothesize that major 
genetic variants associated with differences in puberty 
onset will explain a portion of the variation in reproduc-
tive longevity. A possible solution for selecting superior 
breeding females would be to complement traditional 
fertility-related phenotypes currently used in breeding 
programs with a panel of pleiotropic DNA markers. 
Such a panel could be used early in life and assist the 
selection decision of superior females without recording 
age at puberty. In the current study, various genomic, nu-
tritional, and physiological approaches were integrated 
to determine the genetics and energy restriction effects 
on age at puberty and reproductive longevity in sows.

MATERIALS AND METHODS

This study was approved by the University of 
Nebraska-Lincoln (UNL) Institutional Animal Care 
and Use Committee.

The Resource Population

The UNL swine resource population was developed 
to study the roles of genetics and nutrition on reproduc-
tive development and longevity of sows. Currently, a 
total of 1,644 females have been produced in 14 batches 
(B) that have been extensively phenotyped and geno-
typed (Fig. 1). A detailed description of the resource 
population was previously reported by Miller et al. 
(2011). Briefly, the dams of the experimental females 
were Large White × Landrace (LR) crossbreeds (B1 

to B4) and Nebraska Index Line (NIL; University of 
Nebraska-Lincoln,Lincoln,NE; B1 to B14). The NIL 
was developed based on commercial crossbreeds (Large 
White × LR) and was selected for increased litter size for 
18 generations (Hsu and Johnson, 2014). The dams were 
bred with LR boars from 2 unrelated commercial lines. 
The first batches (B1 to B4) were sired by boars from the 
LR1 line and the remaining (B5 to B14) were sired by 
boars from the LR2 line. Each batch is considered a sep-
arate generation of dams and sires. The number of sires 
per batch varied from 5 (B13) to 12 (B3, B5, and B14), 
whereas the number of litters varied from 21 (B8) to 65 
(B2). The size of the batch varied from 91 to 153 gilts. 
Due to farrowing space limitations (96 pens), not more 
than 110 randomly selected gilts were bred per batch.

Experimental Diets

All gilts were fed a common diet from birth to 123 
d of age. During the development period (123 to 240 d), 
until they were moved to the breeding barn, gilts were 
allocated to an ad libitum standard corn–soybean–based 
diet (diet A), an energy-restricted diet with approxi-
mately 20% less ME (diet B), or an energy- and lysine-
restricted diet (diet C) as described in detail in Trenhaile 
et al. (2015). In the latest batch (B14), diet C (B11 to 
B13) was replaced with a high-lysine diet containing the 
same ME as in the standard diet and ME:lysine ratio as 
in the restricted diet. After being moved to the breeding 

Figure 1. Schematic representation of the approaches used in the 
study. The dams of the experimental gilts were Large White (LW) × 
Landrace (LR) crossbreeds and Nebraska Index Line (NIL; University of 
Nebraska-Lincoln,Lincoln,NE). The dams were bred with LR boars from 
2 unrelated commercial lines. The genetic approaches used included ge-
nomewide association study (GWAS) to identify QTL associated with age 
at puberty and genome and RNA sequencing (RNAseq) to identify func-
tional variants. The candidate SNP will be incorporated into a custom SNP 
chip and validated in 3,000 commercial pigs. 
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barn, all the animals were fed a common diet. All diets 
met or exceeded nutritional requirements (NRC, 2012).

Reproductive Phenotypes

Detection of age at puberty in experimental gilts 
began at approximately 130 d of age and continued 
until all the gilts expressed estrus at least twice with-
in a development pen or until they reached 240 d of 
age. Detection of estrus was achieved by moving gilts 
once per day to an adjacent pen where they were ex-
posed in the same pen to a mature intact boar for 15 
min. Age at puberty was defined as the age at which a 
gilt first expressed estrus (Miller et al., 2011). The ex-
perimental females were maintained through 4 pari-
ties unless they died or were culled. Culling usually 
occurred due to failure to express estrus before 240 
d of age, failure to conceive or farrow, or for major 
feet and leg problems. Litter size traits, including to-
tal number of piglets born (TNB), number of piglets 
born alive (NBA), number mummified and stillborn, 
and lifetime number of parities produced (LT-NP), 
were recorded for as many as 4 parities. Reproductive 
longevity was also analyzed as the probability of the 
sows to produce successive parities. The effect of age 
at puberty (as a covariate) on these probabilities was 
tested using generalized linear mixed models as de-
scribed by Tart et al. (2013).

Genotyping

Tail snips or ear notches were collected from gilts 
shortly after birth, and DNA was isolated (n = 1,644) 
using the DNeasy or Puregene tissue kit (Qiagen Inc., 
Valencia, CA). The quality of DNA was assessed us-
ing a NanoDrop Spectrophotometer (Thermo Fisher 
Scientific Inc., Waltham, MA). All gilts used in 
the study were genotyped with the Porcine SNP60 
BeadArray (Illumina Inc., San Diego, CA). Genotypes 
with an Illumina quality score less than 0.4 and sample 
and SNP call rate less than 80% were removed, leav-
ing 53,529 SNP for further analysis.

Genomewide Association Analyses

The proportion of genetic variance explained by 
high-density SNP genotypes for age at puberty and 
litter size traits in experimental gilts was estimated 
using a BayesB model implemented by GenSel soft-
ware (Fernando and Garrick, 2008) and Bayes interval 
mapping (BayesIM) recently introduced by Kachman 
(2015) that fits haplotypes rather than individual SNP, 
as is the case of BayesB. The SNP were mapped to the 
Sscrofa 10.2 reference genome assembly (http://sup-

port.illumina.com/sequencing/sequencing_software/
igenome.html [accessed 16 March 2016]). The BayesB 
analysis was performed setting the pi value to 0.99, 
assuming that 0.01 of the SNP have a nonzero effect 
on the analyzed phenotype. Previous reports showed 
that a faster convergence is reached when a small set 
of SNP is expected to have a nonzero effect in each 
sampling (Onteru et al., 2012). Batch, diet, litter, sire, 
and developmental pen were included as fixed effects. 
The Markov chain Monte Carlo chain included 41,000 
samples, with the first 1,000 being discarded as burn-in. 
The posterior mean of the genetic and phenotypic vari-
ances explained by each 1-Mb window was calculated 
using effects generated from each 40th sample (Tart 
et al., 2013). Genomic prediction value (GPV) was 
calculated for all gilts using high-density genotypes 
and the mean posterior SNP effects. The BayesIM was 
performed setting the pi value to 0.96, QTL frequency 
to 200 kb, number of haplotype states to 16, average 
haplotype length to 500 kb, and number of iterations 
to estimate haplotype parameters to 25. There were 
82,000 iterations included in the analysis, with the first 
1,000 iterations discarded as burn-in. Random effects 
included sire, litter, and developmental pen, and fixed 
effects included batch and diet.

The interaction between high-density SNP geno-
types and diet on age at puberty and LT-NP was con-
ducted using a BayesB model, including line, batch, 
and diet as fixed effects (GenSel package; Fernando 
and Garrick, 2008). The genotypes were coded to dif-
ferentiate the main effect and the interactions. Forty-
one thousand iterations were performed, with the first 
1,000 discarded as burn-in. The pi value was set to 
0.99 for main effects and 0.995 for interaction effects.

Diet-dependent SNP effects discovered via BayesB 
were validated using single marker association analyses. 
Additive and dominance general linear mixed models 
included batch, diet, SNP, and SNP × diet interaction 
as fixed effects and litter as a random effect. Individual 
SNP effects were also tested to characterize the effect 
of developmental energy intake and age at puberty on 
sow probability to generate parities 1 to 3. The model 
included age at puberty as a covariate; diet, batch, and 
SNP as fixed effects; and litter as a random effect.

The nonoverlapped 1-Mb windows across the ge-
nome were ranked based on the genetic variance ex-
plained for age at puberty. The top 10% of 1-Mb win-
dows associated with largest proportion of genetic 
variance were extended by 0.5 Mb in both directions 
for gene annotation characterization of positional can-
didate genes using the Sscrofa 10.2 genome build and 
the Ensembl gene annotation for Sus scrofa (version 86; 
http://www.ensembl.org/sus_scrofa/info/index.html 
[accessed 16 March 2016]).
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Genome Sequencing

A subset of 16 sires was selected for whole-genome 
sequencing, representing both ends of the distribution 
for the average GPV for age at puberty. Single-end se-
quencing was performed using Ion Proton sequencing, 
as described in the manufacturer’s protocol (Thermo 
Fisher Scientific Inc.). Sequence reads were filtered with 
the PRINSEQ-lite software (Schmieder and Edwards, 
2011) by 1) trimming bases on both read ends when the 
mean quality in a sliding window of 2 bases dropped 
below 20, 2) removing exact duplicates if they occurred 
more than 6 times, 3) removing any read with a non-
called base, and 4) requiring all reads to be at least 30 
nucleotides long. Filtered and trimmed sequence reads 
were aligned to the Sscrofa 10.2 genome assembly 
downloaded from Ensembl using the Bowtie 2 package, 
and only high-quality alignments (Phred score ≥ 30) 
were retained for downstream analysis (Langmead et al., 
2009; Langmead and Salzberg, 2012). To improve SNP 
detection, realignment around indels was performed 
using GATK software tools, RealignerTargetCreator 
(DePristo et al., 2011) and IndelRealigner (DePristo 
et al., 2011), along with the dbSNP database (ftp://
ftp.ncbi.nih.gov/snp/organisms/pig_9823 [accessed 
1 March 2012]) followed by GATK’s BaseCalibrator  
(DePristo et al. 2011) to reduce the effects of se-
quence artifacts. Genetic variants were uncovered us-
ing the multiallelic and rare-variant option of BCFtools 
(Narasimhan et al., 2016) using default settings.

Ribonucleic Acid Sequencing

The hypothalamus was dissected from the brain by 
making the following cuts: rostral to the optic chiasm, cau-
dal to the mammillary body, lateral to the hypothalamic 
sulci, and dorsal to the anterior commissure. Hypothalami 
from different prepubertal (n = 12) and postpubertal gilts 
(n = 25) representing the same litters were collected and 
frozen in liquid nitrogen vapor before being placed on 
dry ice and stored at −80°C until arcuate nucleus (ARC) 
isolation from the hypothalamus. Collection of the hy-
pothalamus from prepubertal gilts was performed before 
boar exposure, approximately 2 wk before the gilts were 
140 d of age (n = 12 gilts from 12 litters). The prepu-
bertal status was confirmed by examining the ovaries at 
slaughter. The postpubertal group was composed of gilts 
fed the 3 experimental diets, A (n = 10), B (n = 8), and 
C (n = 7). Age at puberty ranged from 132 to 215 d. The 
ARC was isolated using a micropunch procedure. Frozen 
coronal sections (250 μm) were cut using a cryostat 
(CM1950; Leica Biosystems, Inc., Buffalo Grove, IL) 
and mounted onto charged microscope slides (Premier; 
Life Science Products Inc., Manassas, VA). Sections 
containing the ARC were identified based on anatomi-

cal references (Kineman et al., 1988, 1989; Amstalden 
et al., 2010). A 2-mm biopsy punch (Miltex Inc., York, 
PA) was used to bilaterally microisolate the ARC from 
each section. Micropunches were immediately trans-
ferred to a frozen microcentrifuge tube, placed on dry ice, 
and then stored at −80°C until isolation of RNA. Total 
RNA was isolated from micropunches by extraction with 
Trizol (Thermo Fisher Scientific Inc.) followed by pre-
cipitation with isopropanol. The pellet was resuspended 
in ribonuclease-free water and RNA purified on RNEasy 
Mini Columns (Qiagen Inc.) according to the manufac-
turer’s protocol for on-column digestion with deoxyribo-
nuclease. The quantity and quality of RNA were deter-
mined by spectrophotometry (NanoDrop 8000; Thermo 
Fisher Scientific Inc.) and microfluidic analysis with an 
Agilent automated electrophoresis system (Agilent 2100 
Bioanalyzer; Agilent Technologies, Foster City, CA).

The RNA sequencing was performed using Ion 
Proton sequencing as described in the manufacturer’s 
protocol (Thermo Fisher Scientific Inc.). The RNA se-
quencing reads were aligned to the Sscrofa 10.2 refer-
ence genome, as explained in the 2-step alignment ap-
proach used for Ion Proton transcriptome data (Sun et 
al., 2013). Briefly, the adaptors attached to the RNA se-
quencing reads were removed using Cutadapt (version 
1.4; Martin, 2011). The quality of raw reads including 
basic statistics, sequence quality, and content were ex-
amined using FastQC (version 0.11; Andrews, 2010). 
The sequence reads were trimmed and filtered using 
Trim Galore (version 0.4; Krueger, 2015). The Phred33 
score was used for quality trimming. Low-quality bases 
in the 5′ end were removed, and nucleotides with base 
calls less than 22 were trimmed off from the 3′ end. The 
filtered reads were first aligned to the Sscrofa 10.2 ref-
erence genome using TopHat (version 2.1; Trapnell et 
al., 2012; Sun et al., 2013). The unmapped reads from 
TopHat were then aligned to the reference genome us-
ing the local option of the Bowtie package (version 2.2; 
Langmead and Salzberg, 2012; Sun et al., 2013). This 
option aligns long reads to the genome by trimming the 
ends of the reads to achieve the greatest possible align-
ment score. The alignment outputs from TopHat and 
local Bowtie were merged with Picard (version 2.1.1; 
Wysoker et al., 2013). The number of reads mapped to 
each gene in the reference annotation was obtained using 
HTSeq (version 0.6.1p1; Anders et al., 2014).

Differentially expressed genes for pre- and post-
pubertal gilts that included gilts that exhibited puberty 
early (<155 d of age) or late (>180 d of age) were deter-
mined using the DESeq2 package (Love et al., 2014). 
DESeq2 uses a statistical approach based on a general-
ized linear model and a negative binomial distribution 
to model gene read counts and identify differentially 
expressed genes. The analysis was performed using the 
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default parameters, and a gene was considered differ-
entially expressed at adjusted P < 0.05.

RESULTS AND DISCUSSION

Age at Puberty is an Indicator  
of Sow Reproductive Longevity

We previously reported that from a range of pre-
breeding gilt phenotypes (i.e., birth weight, weaning 
weight, age at puberty, 230-d BW, backfat thickness, 
and LM area), age at puberty was the only phenotype 
that affected probability of a gilt to produce the first lit-
ter, regardless of their genetic line and developmental 
diet (n = 852; Tart et al., 2013). In an updated analysis 
including a larger data set (n = 1,428), we found that 
age at puberty affects the probability of sows produc-
ing up to 3 parities (P < 0.001). Consistent with our 
initial analysis (Tart et al., 2013), the likelihood of a 
female generating a parity increased as age at puberty 
decreased (Fig. 2), confirming the observed effect of 
age at puberty on multiple parities.

Evaluation of the Ability to Transfer Genomic 
Predictions Based on Major Loci Across Populations

Age at puberty had the greater estimate of herita-
bility from all the reproductive traits measured in our 
resource population (h2 = 0.42; Lucot et al., 2015). In 
comparison, the heritability of NBA and TNB for parity 
1 was 0.16 and 0.12, respectively (Trenhaile et al., 2016). 
The contribution of combined SNP effects to the pheno-
typic variation was greatest for age at puberty (27.2%) 
and limited for litter size (<10%; Table 1). The genetic 
variation of age at puberty is affected by many loci with 
relatively small effects, and the probabilities of the ma-

jor 1-Mb nonoverlapping windows to have effects larger 
than the average windows are less than 0.30 (Fig. 3).

The effectiveness of a marker panel mainly depends 
on its ability to capture functional effects and predict 
cumulative additive genetic merit for animals not con-
tained in the training population. This has been proven 
to work well within a population when the animals used 
in the training set are closely related to those used for 
prediction. However, the expense related to measuring 
age at puberty necessitates that genomic information 
be transferred from experimental populations to poten-
tially disjoint industry populations. Lucot et al. (2015) 
clearly illustrated that transferring SNP effects from a 
training population to various evaluation sets resulted 
in low correlations between GPV and adjusted pheno-
types. When all the SNP from the top ranked 1, 5, 10, 20, 
and 50% 1-Mb windows identified in a training set (B1–
B7; n = 820) were used in an evaluation set (B8–B11; n 
= 412) consisting of subsequent generations of similar 
genetics, the phenotypic variation that was explained 
ranged from 12.3 (top 1% 1-Mb windows) to 36.8% 
(top 20%). The addition of more than the top 20% of 
high-ranked 1-Mb windows resulted in a decline in the 
proportion of phenotypic variation that was explained. 
When only the highest ranked SNP from these subsets 
of 1-Mb windows (e.g., 1 SNP per 1-Mb window) were 
evaluated, the phenotypic variation captured was less 
and varied from 6.5 (top 1%) to 23.7% (top 50%). This 
finding is probably due to the fact that SNP identified as 
highest ranked in the training set are not functional vari-
ants, and the linkage disequilibrium between these SNP 
and the actual functional polymorphisms is redefined 
in the evaluation set. However, Lucot et al. (2015) em-
phasized that the knowledge of important regions can 
be captured using all SNP in the region identified in the 
training set and re-estimating their effects in the target 
population. Specifically, the correlations between GPV 
based on SNP effects estimated in the training set and 
the phenotype was marginal (between −0.01 to 0.17) 
compared with their effects retrained in the evaluation 

Figure 2. The effect of gilt age at puberty on the probability to pro-
duce up to 3 parities. The likelihood of a female generating a parity in-
creased as age at puberty decreased (P < 0.0001).

Table 1. Posterior means of variance components 
of age at puberty and litter size traits based on SNP 
effects estimated by BayesB statistical model
 
Trait1

 
No.

Genetic 
variance

Residual 
variance

Total 
variance

Phenotypic variance 
explained by SNP, %

AP 1,644 93.09 195.31 268.50 27.2
NBA-P1 903 1.04 12.63 13.67 7.6
NBA-P2 903 0.30 11.60 11.90 2.5
TNB-P1 903 0.36 9.29 9.65 3.7
TNB-P2 903 0.38 12.04 12.42 3.1

1AP = age at puberty; NBA-P1 = number of piglets born alive in parity 1; 
NBA-P2 = number of piglets born alive in parity 2; TNB-P1 = total number 
of piglets born in parity 1; TNB-P2 = total number of piglets born in parity 2.
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set for all (0.46 to 0.81) or most informative SNP (0.30 
to 0.65) from the high-ranked 1-Mb windows (Lucot et 
al., 2015). To further refine the transfer of information 
from training to target populations, elucidating causal 
mutations will be necessary.

Identification of Genomic Regions  
and Candidate Genes

To uncover pleotropic sources of variation that affect 
both age at puberty and reproductive longevity, we used 
2 Bayesian mixture models. Genomewide association 
analysis performed using a BayesB model uncovered 
major 1-Mb windows associated with age at puberty lo-
cated on SSC2 (12 to 12.9 Mb), SSC9 (22 to 22.9, 82 to 
82.9, and 106.2 to 106.9 Mb), and SSC13 (211 to 211.9 
Mb) that explained from 0.32 to 0.61% of the genetic 
variation for age at puberty (Fig. 4a). The top 1% major 
1-Mb windows (n = 26) explained 6.7% of genetic varia-
tion of age at puberty. The position of the SSC2 window 
was located near a 1-Mb window we identified for litter 
size traits in the same population and also in the prox-
imity of a potential selection sweep region (Trenhaile 
et al., 2016). The same region (12.8 Mb) explained the 
greatest fraction of the total genetic variance for age at 
puberty using a BayesIM model (Fig. 4b). A candidate 
gene in this area, P2X3R, is involved in placental at-
tachment and maintenance of pregnancy. Alleles fixed 
in NIL but polymorphic in lines not subjected to selec-
tion indicated P2X3R as a potential source of the large 
litter size in NIL (Trenhaile et al., 2016).

In general, we observed that both SNP- (BayesB) 
and haplotype-based (BayesIM) models captured a por-
tion of the same major regions associated with age at pu-
berty, such as the one located on SSC2 (12 to 12.9 Mb; 
Fig. 4a and 4b). This finding is also based on a high pair-
wise correlation between GPV obtained from BayesB 
and BayesIM (r = 0.8), indicating that both models 
capture common loci responsible for genetic variation 
(Fig. 4c). Major regions associated with age at puberty 
(top 1% 1-Mb windows), such as the regions on SSC5 (4 
Mb) and SSC12 (57 Mb), were reported from a different 
population of crossbred gilts (Nonneman et al., 2016).

The top 1% of major 1-Mb windows mapped by both 
BayesB and BayesIM uncovered genes that have known 
postpubertal involvement, such as genes involved in 
fertilization (CLIC4 [SSC6, 76 Mb] and NR2F2 [SSC7, 
88.9 Mb]), placental development (NR2F2 [SSC7, 88.9 
Mb]), progesterone secretion and luteinization (FZD4 
[SSC9, 22.9 Mb]), and pregnancy and placental attach-
ment (LIF [SSC14, 67.2 Mb]; http://geneontology.org 
[accessed 17 March 2016]). In our previous study, Tart 
et al. (2013) identified AVPR1A as a candidate gene in a 
pleotropic region (SSC5, 27 to 28 Mb) associated with 
both age at puberty and lifetime number of parities. This 
gene is a G protein-coupled receptor involved in social 
and reproductive behavior (Caldwell et al., 2008; Walum 
et al., 2008; Gobrogge et al., 2009). There were 3 non-
synonymous SNP identified in this gene (G31E, G256D, 
and K377Q). Homozygozity for the favorable G allele of 
G31E was associated with 5.8 d early expression of pu-
berty and 0.53 more LT-NP (Tart et al., 2013) compared 
with AA genotype (Tart et al., 2013). Lucot et al. (2015) 
validated this finding in a larger data set. In the current 
study, the frequency of the favorable G allele across the 
resource population (B1 to B12) continuously increased 
from 0.42 in females unable to produce a single litter to 
0.50 in females that produced 3 parities (P < 0.05; 0.46 
in parity 1 and 0.47 in parity 2). These results illustrate 
how this type of polymorphism has potential to be useful 
in improving reproductive longevity in sow populations.

A major shortcoming for some of the high-density 
commercially available SNP panels is that a large pro-
portion of the SNP do not have an assigned position in 
the reference genome. For example, 5,121 SNP from 
the Porcine SNP60 BeadArray do not have a physi-
cal location. This is particularly problematic if the de-
sire is to use a haplotype-based statistical model (e.g., 
BayesIM). Genomewide association revealed that un-
mapped SNP represented an important group of the top 
0.1% SNP associated with age at puberty (11 of the 53 
SNP). For example, 2 unmapped SNP, ASGA0092359 
and ASGA0008471, are within the top 3 SNP for their 
effect on age at puberty. Linkage disequilibrium analy-
sis across Porcine SNP60 BeadArray SNP revealed that 

Figure 3. Box plot of the probability of 1-Mb windows having ef-
fects greater than average (including quartiles and outliers) on age at pu-
berty (AP), number of piglets born alive in parity 1 (NBA-P1), number of 
piglets born alive in parity 2 (NBA-P2), total number of piglets born in 
parity 1 (TNB-P1), and total number of piglets born in parity 2 (TNB-P2). 
Age at puberty is a typical quantitative trait influenced by large number of 
genes with no evidence of major loci explaining substantial phenotypic 
variation. The probability of the major 1-Mb windows to have an effect 
greater than the average is less than 0.30.
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ASGA0008471 is most likely located on SSC2 (2.5 to 
2.9 Mb; r2 > 0.25) and ASGA0092359 is located on 
SSC5 (65 to 68 Mb; r2 > 0.12) based on linkage dis-
equilibrium estimates with multiple mapped SNP from 
the Porcine SNP60 BeadArray. We encountered similar 
results in a QTL analysis for susceptibility to porcine 
circovirus 2 (Tosky et al., 2016). In this study, we used a 
chromosomal scaffold based on long sequencing reads 
and a combination of RNA sequencing alignments and 
gene prediction software to fully annotate and map the 
phenotypic variation. A similar approach or an updated 
reference genome will be used in the future to fully 
characterize major QTL regions for age at puberty. This 
process is critical because a SNP such as ASGA0008471 

was shown to have additive pleiotropic effects (P < 
0.05). The favorable homozygote genotype was associ-
ated with 4.3 d earlier expression of age at puberty (n = 
1,614; P = 0.01) and 0.29 more LT-NP (n = 1,214; P < 
0.10) compared with the alternate homozygote.

Whole-Genome Sequencing Uncovered  
Potential Sources of Genetic Variation

To identify genetic variants outside the limited 
capability of the Porcine SNP60 BeadArray, we per-
formed next generation genome sequencing on 16 sires 
that represent both ends of the distribution for aver-
age daughter’s GPV for age at puberty. The average 
number of gilts with available GPV per sequenced sire 
was 21.8. Individual genomic coverage varied from 
16.2- to 26.7-fold) with an average of 22.2-fold cover-
age. The average length of the sequencing reads after 
filtering was 164.9 bp. The uncovered genetic variants 
filtered for Phred quality score (≥20), pooled reads 
depth (≥10), and B-Allele Frequency score (≥0.5 for 
indels only; Yeo et al., 2012) included 11,201,995 SNP 
and 1,007,486 indels among samples. The majority of 
the discovered SNP were intergenic (60.0%). Intronic 
SNP were the most prevalent (96.3%) from all poly-
morphisms located in genes followed by 5′ and 3′ un-
translated region (1.9%) and the coding region (1.4%). 
The effect of the depth of pooled sequencing reads on 
polymorphisms discovery was evaluated; no major 
changes in the distribution of SNP localization were 
found. A number of these polymorphisms could be po-
tential sources of genetic variation if they are located in 
the extended areas of the major 1-Mb windows associ-
ated with phenotypic differences for the targeted traits.

Ribonucleic Acid Sequencing  
of Arcuate Nucleus Provides Expression  
Profiling of Gilts with Different Puberty Status

Recent studies have demonstrated that a considerable 
proportion of phenotypic variation observed in reproduc-
tive traits is a result of variations in gene expression due 
to polymorphisms in the regulatory regions (Chen et al., 
2016). High-throughput RNA sequencing is an effective 
method to perform genomewide quantification of gene 
expression as well as to reveal new genes and splice site 
variants. For example, RNA sequencing has been used 
in identifying differentially expressed genes associated 
with litter size traits in the placenta in Berkshire pigs 
(Kwon et al., 2016) and the ovaries in Yorkshire pigs 
(Zhang et al., 2015). Fischer et al. (2015) analyzed the 
transcriptome of the testis and oviduct of Finnish Large 
White pigs and identified polymorphisms in differentially 
expressed genes associated with reproduction.

Figure 4. Genomewide association analysis for age at puberty. The 
autosomes, from SSC1 to 18, followed by chromosome X are represented 
by different colors. A) BayesB model. Each dot represents a SNP and there 
were 5 high-ranked 1-Mb windows including SSC2 (12 to 12.9 Mb), SSC9 
(22 to 22.9, 82 to 82.9, and 106.2 to 106.9 Mb), and SSC13 (211 to 211.9 
Mb) that explained from 0.32 to 0.61% of the genetic variation for age at 
puberty. B) Bayes interval mapping (BayesIM) model. Each dot represents 
a 200 kb haplotype. Both SNP- (BayesB) and haplotype-based (BayesIM) 
models captured some of the same high-ranked regions associated with age 
at puberty (SSC2, 12 to 12.9 Mb). C) Correlation of the genomic prediction 
values (GPV) between BayesB and BayesIM models (r = 0.8) indicates 
that both models capture common loci responsible for genetic variation.
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The hypothalamic ARC contains neurons that are 
involved in regulating pubertal onset and maintenance 
of estrous cycles through the control of gonadotropin 
secretion (Lehman et al., 2010; Redmond et al., 2011). 
High-throughput RNA sequencing reads were ob-
tained from the ARC from gilts representing pre- and 
postpubertal time points and early and late pubertal 
gilts fed 3 different dietary treatments. On average, 
55.3 million raw, single-end Ion Proton reads with 
an average length of 150 bp were obtained per gilt. 
After trimming the reads based on quality, 90% of the 
raw reads per gilt (50 million) were available for tran-
scriptome analysis. Using a 2-step alignment process 
(Sun et al., 2013), we were able to map 94.4% of the 
trimmed reads to the genome. Of these mapped reads, 
45.1% of the reads were mapped to actual genes.

As expected, a large number of genes were found 
differentially expressed between prepubertal and postpu-
bertal gilts (early or late; n > 5,800; adjusted P < 0.05). 
Differential expression between early and late pubertal 
gilts was observed for 17 genes (adjusted P < 0.05), in-
cluding a gene involved in energy homeostasis (FFAR2 
[SSC6, 40.2 Mb]). The ARC is one of the major sites in 
the hypothalamus involved in integrating central and pe-
ripheral signals that regulate energy homeostasis (Sahu, 
2004; Hausman et al., 2012) and links nutrition with 
reproductive development in gilts (Barb et al., 2006). 
Twelve of these genes are upregulated in gilts exhibiting 
puberty at later ages compared with gilts with early age at 
puberty. None of the differentially expressed genes were 
located in the QTL regions associated with age at pu-
berty. We speculate that some differences in expression 
could be a result of trans-modulation. For example, there 
are 74 genes known in humans (37 genes have swine 
orthologs) to be upstream regulators of the differentially 
expressed genes identified. Two of these upstream genes 
are located in the vicinity of a QTL for age at puberty 
(SSC13, 217 Mb), and as a result, they could influence 
variation in age at puberty via downstream differentially 
expressed genes. In the future, gene expression and path-
way analysis combined with genetic variants located in 
the QTL areas will be integrated to expand our under-
standing of the genetic role in puberty onset.

Genomewide SNP × Diet Interaction on Age at 
Puberty and Reproductive Longevity

Genetic background and caloric intake affect the 
neuroendocrine axis and, as a result, the age when fe-
males express first estrus (Barb et al., 2002). In a previ-
ous study, using the same UNL population, Miller et al. 
(2011) demonstrated that energy restriction reduced BW, 
backfat, and LM area and delayed reproductive devel-
opment. Our research showed that early expression of 

age at puberty is associated with reproductive longev-
ity. We have also demonstrated that energy restriction 
delayed age at puberty by approximately 7 d but had 
positive sow fertility effects by increasing the probabili-
ty to achieve parity 2 and 3 (P < 0.05). Although not sig-
nificant (P < 0.4), parity 1 followed a similar trend (Fig. 
5). When analyzed at the genomewide level, the effect 
of SNP × diet interactions on age at puberty margin-
ally contributed to the proportion of phenotypic varia-
tion explained by SNP main effects (0.25% of additional 
phenotypic variation explained; Trenhaile et al., 2015). 
All SNP identified to interact with diet and affecting age 
at puberty (n = 8) and LT-NP (n = 4) have significant 
genotype × diet effects (P < 0.05; Table 2). The SNP had 
significant additive effects in at least one diet, with op-
posite effects among the dietary treatments (Fig. 5). As 
expected, no significant effects were observed when the 
analysis was performed on the integrated data set. As 
described above, one gene associated with a pleiotropic 
effect was AVPR1A (Tart et al., 2013). Initial findings of 
the second parity success demonstrated that the GG gen-
otype was favorable across developmental diets and dif-
ferent from AG and AA genotypes (P < 0.05). However, 
when fed an energy-restricted diet, sows with the AG 
genotype are just as likely to produce parity 2 as sows 
with the favorable GG genotype fed the standard diet 
(Lucot et al., 2015). This is an example where the envi-
ronment (in this case, a change in diet) can overwrite the 
genetic role in phenotypic variation. However, when the 
cumulative effects of all SNP are considered, reranking 
of GPV among dietary treatments investigated herein is 
not expected. A greater understanding of the molecular 
mechanisms involved in the interaction between nutri-

Figure 5. The effect of age at puberty and energy input during gilt 
development period on the probability to produce up to 3 parities. Energy 
restriction delayed age at puberty by approximately 7 d and increased the 
probability of the sows to produce parity 2 (P2) and parity 3 (P3; P < 0.05). 
Although not significant, parity 1 (P1) followed a similar trend (P < 0.4).
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tion and sow genome could be useful in designing ef-
ficient strategies to develop highly prolific sows.

Summary and Conclusions

The ultimate goal of this project was to enable ac-
curate genomic prediction by identifying genes and 
functional polymorphisms associated with early onset of 
puberty and reproductive longevity. To achieve our pur-
pose we combined the results obtained from a genome-
wide association, genomic and transcriptomic sequenc-
ing, and gene expression profiling of the experimental 
animals. A customized marker panel will be constructed 
incorporating the functional variants and variants with 
the greatest effect on the targeted traits, and it will be 
applied in several commercial populations for evalua-
tion. Functional polymorphisms and SNP-enriched re-
gions with large effects on fertility traits will increase 
the ability of genomic information to be transferred be-
tween populations. Applying these tools when selecting 
replacement gilts will benefit the swine industry by de-
creasing the production costs due to improved reproduc-
tive efficiency, reduction in sow culling and gilt replace-
ment rates, and improving animal well-being.
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