118 research outputs found

    People with cerebral palsy and their family’s preferences about genomics research

    Get PDF
    Introduction: The goal of this study was to understand individuals with cerebral palsy (CP) and their family’s attitudes and preferences to genomic research, including international data sharing and biobanking. Methods: Individuals with CP and their family members were invited to participate in the web-based survey via email (NSW/ACT CP Register) or via posts on social media by Cerebral Palsy Alliance, CP Research Network, and CP Now. Survey responses included yes/no/unsure, multiple choices, and Likert scales. Fisher’s exact and χ2 tests were used to assess if there were significant differences between subgroups. Results: Individuals with CP and their families (n = 145) were willing to participate in genomics research (68%), data sharing (82%), and biobanking efforts (75%). This willingness to participate was associated with completion of tertiary education, previous genetic testing experience, overall higher genomic awareness, and trust in international researchers. The survey respondents also expressed ongoing communication and diverse information needs regarding the use of their samples and data. Major concerns were associated with privacy and data security. Discussion: The success of genomic research and international data sharing efforts in CP are contingent upon broad support and recruitment. Ongoing consultation and engagement of individuals with CP and their families will facilitate trust and promote increased awareness of genomics in CP that may in turn maximize participant uptake and recruitment

    Solar Magnetic Carpet I: Simulation of Synthetic Magnetograms

    Full text link
    This paper describes a new 2D model for the photospheric evolution of the magnetic carpet. It is the first in a series of papers working towards constructing a realistic 3D non-potential model for the interaction of small-scale solar magnetic fields. In the model, the basic evolution of the magnetic elements is governed by a supergranular flow profile. In addition, magnetic elements may evolve through the processes of emergence, cancellation, coalescence and fragmentation. Model parameters for the emergence of bipoles are based upon the results of observational studies. Using this model, several simulations are considered, where the range of flux with which bipoles may emerge is varied. In all cases the model quickly reaches a steady state where the rates of emergence and cancellation balance. Analysis of the resulting magnetic field shows that we reproduce observed quantities such as the flux distribution, mean field, cancellation rates, photospheric recycle time and a magnetic network. As expected, the simulation matches observations more closely when a larger, and consequently more realistic, range of emerging flux values is allowed (4e16 - 1e19 Mx). The model best reproduces the current observed properties of the magnetic carpet when we take the minimum absolute flux for emerging bipoles to be 4e16 Mx. In future, this 2D model will be used as an evolving photospheric boundary condition for 3D non-potential modeling.Comment: 33 pages, 16 figures, 5 gif movies included: movies may be viewed at http://www-solar.mcs.st-and.ac.uk/~karen/movies_paper1

    Evolution of active and polar photospheric magnetic fields during the rise of Cycle 24 compared to previous cycles

    Full text link
    The evolution of the photospheric magnetic field during the declining phase and minimum of Cycle 23 and the recent rise of Cycle 24 are compared with the behavior during previous cycles. We used longitudinal full-disk magnetograms from the NSO's three magnetographs at Kitt Peak, the Synoptic Optical Long-term Investigations of the Sun (SOLIS) Vector Spectro-Magnetograph (VSM), the Spectromagnetograph and the 512-Channel Magnetograph instruments, and longitudinal full-disk magnetograms from the Mt. Wilson 150-foot tower. We analyzed 37 years of observations from these two observatories that have been observing daily, weather permitting, since 1974, offering an opportunity to study the evolving relationship between the active region and polar fields in some detail over several solar cycles. It is found that the annual averages of a proxy for the active region poloidal magnetic field strength, the magnetic field strength of the high-latitude poleward streams, and the time derivative of the polar field strength are all well correlated in each hemisphere. These results are based on statistically significant cyclical patterns in the active region fields and are consistent with the Babcock-Leighton phenomenological model for the solar activity cycle. There was more hemispheric asymmetry in the activity level, as measured by total and maximum active region flux, during late Cycle 23 (after around 2004), when the southern hemisphere was more active, and Cycle 24 up to the present, when the northern hemisphere has been more active, than at any other time since 1974. The active region net proxy poloidal fields effectively disappeared in both hemispheres around 2004, and the polar fields did not become significantly stronger after this time. We see evidence that the process of Cycle 24 field reversal has begun at both poles.Comment: Accepted for publication in Solar Physic

    Evolutionary origins of the estrogen signaling system : insights from amphioxus

    Get PDF
    Author Posting. © The Author(s), 2011. This is the author's version of the work. It is posted here by permission of Elsevier B.V. for personal use, not for redistribution. The definitive version was published in Journal of Steroid Biochemistry and Molecular Biology 127 (2011): 176–188, doi:10.1016/j.jsbmb.2011.03.022.Classically, the estrogen signaling system has two core components: cytochrome P450 aromatase (CYP19), the enzyme complex that catalyzes the rate limiting step in estrogen biosynthesis; and estrogen receptors (ERs), ligand activated transcription factors that interact with the regulatory region of target genes to mediate the biological effects of estrogen. While the importance of estrogens for regulation of reproduction, development and physiology has been well-documented in gnathostome vertebrates, the evolutionary origins of estrogen as a hormone are still unclear. As invertebrates within the phylum Chordata, cephalochordates (e.g. the amphioxus of the genus Branchiostoma) are among the closest invertebrate relatives of the vertebrates and can provide critical insight into the evolution of vertebrate-specific molecules and pathways. To address this question, this paper briefly reviews relevant earlier studies that help to illuminate the history of the aromatase and ER genes, with a particular emphasis on insights from amphioxus and other invertebrates. We then present new analyses of amphioxus aromatase and ER sequence and function, including an in silico model of the amphioxus aromatase protein, and CYP19 gene analysis. CYP19 shares a conserved gene structure with vertebrates (9 coding exons) and moderate sequence conservation (40% amino acid identity with human CYP19). Modeling of the amphioxus aromatase substrate binding site and simulated docking of androstenedione in comparison to the human aromatase shows that the substrate binding site is conserved and predicts that androstenedione could be a substrate for amphioxus CYP19. The amphioxus ER is structurally similar to vertebrate ERs, but differs in sequence and key residues of the ligand binding domain. Consistent with results from other laboratories, amphioxus ER did not bind radiolabeled estradiol, nor did it modulate gene expression on an estrogen-responsive element (ERE) in the presence 59 of estradiol, 4-hydroxytamoxifen, diethylstilbestrol, bisphenol A or genistein. Interestingly, it has been shown that a related gene, the amphioxus “steroid receptor” (SR), can be activated by estrogens and that amphioxus ER can repress this activation. CYP19, ER and SR are all primarily expressed in gonadal tissue, suggesting an ancient paracrine/autocrinesignaling role, but it is not yet known how their expression is regulated and, if estrogen is actually synthesized in amphioxus, whether it has a role in mediating any biological effects . Functional studies are clearly needed to link emerging bioinformatics and in vitro molecular biology results with organismal physiology to develop an understanding of the evolution of estrogen signaling.Supported by grants from the NIEHS P42 ES07381 (GVC, SV) and EPA (STAR-RD831301) (GVC), a Ruth L Kirschstein National Research Service Award (AT, F32 ES013092-01), an NIH traineeship (SS, SG), a NATO Fellowship (AN) and the Boston University Undergraduate Research Program (LC)

    Using Virtual Agents to Guide Attention in Multi-task Scenarios

    Get PDF
    Kulms P, Kopp S. Using Virtual Agents to Guide Attention in Multi-task Scenarios. In: Aylett R, Krenn B, Pelachaud C, Shimodaira H, eds. Intelligent Virtual Agents. Lecture Notes in Computer Science. Vol 8108. Berlin, Heidelberg: Springer Berlin Heidelberg; 2013: 295-302

    Genome-wide association study of heart rate and its variability in Hispanic/Latino cohorts

    Get PDF
    Background Although time–domain measures of heart rate variability (HRV) are used to estimate cardiac autonomic tone and disease risk in multiethnic populations, the genetic epidemiology of HRV in Hispanics/Latinos has not been characterized. Objective The purpose of this study was to conduct a genome-wide association study of heart rate (HR) and its variability in the Hispanic Community Health Study/Study of Latinos, Multi-Ethnic Study of Atherosclerosis, and Women's Health Initiative Hispanic SNP-Health Association Resource project (n = 13,767). Methods We estimated HR (bpm), standard deviation of normal-to-normal interbeat intervals (SDNN, ms), and root mean squared difference in successive, normal-to-normal interbeat intervals (RMSSD, ms) from resting, standard 12-lead ECGs. We estimated associations between each phenotype and 17 million genotyped or imputed single nucleotide polymorphisms (SNPs), accounting for relatedness and adjusting for age, sex, study site, and ancestry. Cohort-specific estimates were combined using fixed-effects, inverse-variance meta-analysis. We investigated replication for select SNPs exceeding genome-wide (P <5 × 10–8) or suggestive (P <10–6) significance thresholds. Results Two genome-wide significant SNPs replicated in a European ancestry cohort, 1 one for RMSSD (rs4963772; chromosome 12) and another for SDNN (rs12982903; chromosome 19). A suggestive SNP for HR (rs236352; chromosome 6) replicated in an African-American cohort. Functional annotation of replicated SNPs in cardiac and neuronal tissues identified potentially causal variants and mechanisms. Conclusion This first genome-wide association study of HRV and HR in Hispanics/Latinos underscores the potential for even modestly sized samples of non-European ancestry to inform the genetic epidemiology of complex traits

    GWAS of QRS duration identifies new loci specific to Hispanic/Latino populations

    Get PDF
    Background The electrocardiographically quantified QRS duration measures ventricular depolarization and conduction. QRS prolongation has been associated with poor heart failure prognosis and cardiovascular mortality, including sudden death. While previous genome-wide association studies (GWAS) have identified 32 QRS SNPs across 26 loci among European, African, and Asian-descent populations, the genetics of QRS among Hispanics/Latinos has not been previously explored. Methods We performed a GWAS of QRS duration among Hispanic/Latino ancestry populations (n = 15,124) from four studies using 1000 Genomes imputed genotype data (adjusted for age, sex, global ancestry, clinical and study-specific covariates). Study-specific results were combined using fixed-effects, inverse variance-weighted meta-analysis. Results We identified six loci associated with QRS (P<5x10-8), including two novel loci: MYOCD, a nuclear protein expressed in the heart, and SYT1, an integral membrane protein. The top SNP in the MYOCD locus, intronic SNP rs16946539, was found in Hispanics/Latinos with a minor allele frequency (MAF) of 0.04, but is monomorphic in European and African descent populations. The most significant QRS duration association was with intronic SNP rs3922344 (P = 1.19x10-24) in SCN5A/SCN10A. Three other previously identified loci, CDKN1A, VTI1A, and HAND1, also exceeded the GWAS significance threshold among Hispanics/Latinos. A total of 27 of 32 previously identified QRS duration SNPs were shown to generalize in Hispanics/Latinos. Conclusions Our QRS duration GWAS, the first in Hispanic/Latino populations, identified two new loci, underscoring the utility of extending large scale genomic studies to currently under-examined populations

    Genotype-Phenotype Correlation in NF1: Evidence for a More Severe Phenotype Associated with Missense Mutations Affecting NF1 Codons 844–848

    Get PDF
    Neurofibromatosis type 1 (NF1), a common genetic disorder with a birth incidence of 1:2,000–3,000, is characterized by a highly variable clinical presentation. To date, only two clinically relevant intragenic genotype-phenotype correlations have been reported for NF1 missense mutations affecting p.Arg1809 and a single amino acid deletion p.Met922del. Both variants predispose to a distinct mild NF1 phenotype with neither externally visible cutaneous/plexiform neurofibromas nor other tumors. Here, we report 162 individuals (129 unrelated probands and 33 affected relatives) heterozygous for a constitutional missense mutation affecting one of five neighboring NF1 codons—Leu844, Cys845, Ala846, Leu847, and Gly848—located in the cysteine-serine-rich domain (CSRD). Collectively, these recurrent missense mutations affect ∼0.8% of unrelated NF1 mutation-positive probands in the University of Alabama at Birmingham (UAB) cohort. Major superficial plexiform neurofibromas and symptomatic spinal neurofibromas were more prevalent in these individuals compared with classic NF1-affected cohorts (both p < 0.0001). Nearly half of the individuals had symptomatic or asymptomatic optic pathway gliomas and/or skeletal abnormalities. Additionally, variants in this region seem to confer a high predisposition to develop malignancies compared with the general NF1-affected population (p = 0.0061). Our results demonstrate that these NF1 missense mutations, although located outside the GAP-related domain, may be an important risk factor for a severe presentation. A genotype-phenotype correlation at the NF1 region 844–848 exists and will be valuable in the management and genetic counseling of a significant number of individuals
    corecore