18 research outputs found

    The SIMPSONS project: An integrated Mars transportation system

    Get PDF
    In response to the Request for Proposal (RFP) for an integrated transportation system network for an advanced Martian base, Frontier Transportation Systems (FTS) presents the results of the SIMPSONS project (Systems Integration for Mars Planetary Surface Operations Networks). The following topics are included: the project background, vehicle design, future work, conclusions, management status, and cost breakdown. The project focuses solely on the surface-to-surface transportation at an advanced Martian base

    Evolution of brown carbon in wildfire plumes

    Get PDF
    Particulate brown carbon (BrC) in the atmosphere absorbs light at subvisible wavelengths and has poorly constrained but potentially large climate forcing impacts. BrC from biomass burning has virtually unknown lifecycle and atmospheric stability. Here, BrC emitted from intense wildfires was measured in plumes transported over 2 days from two main fires, during the 2013 NASA SEAC4RS mission. Concurrent measurements of organic aerosol (OA) and black carbon (BC) mass concentration, BC coating thickness, absorption Ångström exponent, and OA oxidation state reveal that the initial BrC emitted from the fires was largely unstable. Using back trajectories to estimate the transport time indicates that BrC aerosol light absorption decayed in the plumes with a half-life of 9 to 15 h, measured over day and night. Although most BrC was lost within a day, possibly through chemical loss and/or evaporation, the remaining persistent fraction likely determines the background BrC levels most relevant for climate forcing

    Regional Environmental Breadth Predicts Geographic Range and Longevity in Fossil Marine Genera

    Get PDF
    Geographic range is a good indicator of extinction susceptibility in fossil marine species and higher taxa. The widely-recognized positive correlation between geographic range and taxonomic duration is typically attributed to either accumulating geographic range with age or an extinction buffering effect, whereby cosmopolitan taxa persist longer because they are reintroduced by dispersal from remote source populations after local extinction. The former hypothesis predicts that all taxa within a region should have equal probabilities of extinction regardless of global distributions while the latter predicts that cosmopolitan genera will have greater survivorship within a region than endemics within the same region. Here we test the assumption that all taxa within a region have equal likelihoods of extinction.We use North American and European occurrences of marine genera from the Paleobiology Database and the areal extent of marine sedimentary cover in North America to show that endemic and cosmopolitan fossil marine genera have significantly different range-duration relationships and that broad geographic range and longevity are both predicted by regional environmental breadth. Specifically, genera that occur outside of the focal region are significantly longer lived and have larger geographic ranges and environmental breadths within the focal region than do their endemic counterparts, even after controlling for differences in sampling intensity. Analyses of the number of paleoenvironmental zones occupied by endemic and cosmopolitan genera suggest that the number of paleoenvironmental zones occupied is a key factor of geographic range that promotes genus survivorship.Wide environmental tolerances within a single region predict both broad geographic range and increased longevity in marine genera over evolutionary time. This result provides a specific driving mechanism for the spatial and temporal distributions of marine genera at regional and global scales and is consistent with the niche-breadth hypothesis operating on macroevolutionary timescales

    Phylogeography of Ostreopsis along West Pacific Coast, with Special Reference to a Novel Clade from Japan

    Get PDF
    BACKGROUND: A dinoflagellate genus Ostreopsis is known as a potential producer of Palytoxin derivatives. Palytoxin is the most potent non-proteinaceous compound reported so far. There has been a growing number of reports on palytoxin-like poisonings in southern areas of Japan; however, the distribution of Ostreopsis has not been investigated so far. Morphological plasticity of Ostreopsis makes reliable microscopic identification difficult so the employment of molecular tools was desirable. METHODS/PRINCIPAL FINDING: In total 223 clones were examined from samples mainly collected from southern areas of Japan. The D8-D10 region of the nuclear large subunit rDNA (D8-D10) was selected as a genetic marker and phylogenetic analyses were conducted. Although most of the clones were unable to be identified, there potentially 8 putative species established during this study. Among them, Ostreopsis sp. 1-5 did not belong to any known clade, and each of them formed its own clade. The dominant species was Ostreopsis sp. 1, which accounted for more than half of the clones and which was highly toxic and only distributed along the Japanese coast. Comparisons between the D8-D10 and the Internal Transcribed Spacer (ITS) region of the nuclear rDNA, which has widely been used for phylogenetic/phylogeographic studies in Ostreopsis, revealed that the D8-D10 was less variable than the ITS, making consistent and reliable phylogenetic reconstruction possible. CONCLUSIONS/SIGNIFICANCE: This study unveiled a surprisingly diverse and widespread distribution of Japanese Ostreopsis. Further study will be required to better understand the phylogeography of the genus. Our results posed the urgent need for the development of the early detection/warning systems for Ostreopsis, particularly for the widely distributed and strongly toxic Ostreopsis sp. 1. The D8-D10 marker will be suitable for these purposes

    Nighttime and daytime dark oxidation chemistry in wildfire plumes: an observation and model analysis of FIREX-AQ aircraft data

    No full text
    Wildfires are increasing in size across the western US, leading to increases in human smoke exposure and associated negative health impacts. The impact of biomass burning (BB) smoke, including wildfires, on regional air quality depends on emissions, transport, and chemistry, including oxidation of emitted BB volatile organic compounds (BBVOCs) by the hydroxyl radical (OH), nitrate radical (NO3), and ozone (O3). During the daytime, when light penetrates the plumes, BBVOCs are oxidized mainly by O3 and OH. In contrast, at night or in optically dense plumes, BBVOCs are oxidized mainly by O3 and NO3. This work focuses on the transition between daytime and nighttime oxidation, which has significant implications for the formation of secondary pollutants and loss of nitrogen oxides (NOx=NO+NO2) and has been understudied. We present wildfire plume observations made during FIREX-AQ (Fire Influence on Regional to Global Environments and Air Quality), a field campaign involving multiple aircraft, ground, satellite, and mobile platforms that took place in the United States in the summer of 2019 to study both wildfire and agricultural burning emissions and atmospheric chemistry. We use observations from two research aircraft, the NASA DC-8 and the NOAA Twin Otter, with a detailed chemical box model, including updated phenolic mechanisms, to analyze smoke sampled during midday, sunset, and nighttime. Aircraft observations suggest a range of NO3 production rates (0.1–1.5 ppbv h−1) in plumes transported during both midday and after dark. Modeled initial instantaneous reactivity toward BBVOCs for NO3, OH, and O3 is 80.1 %, 87.7 %, and 99.6 %, respectively. Initial NO3 reactivity is 10–104 times greater than typical values in forested or urban environments, and reactions with BBVOCs account for >97 % of NO3 loss in sunlit plumes (jNO2 up to 4×10−3s−1), while conventional photochemical NO3 loss through reaction with NO and photolysis are minor pathways. Alkenes and furans are mostly oxidized by OH and O3 (11 %–43 %, 54 %–88 % for alkenes; 18 %–55 %, 39 %–76 %, for furans, respectively), but phenolic oxidation is split between NO3, O3, and OH (26 %–52 %, 22 %–43 %, 16 %–33 %, respectively). Nitrate radical oxidation accounts for 26 %–52 % of phenolic chemical loss in sunset plumes and in an optically thick plume. Nitrocatechol yields varied between 33 % and 45 %, and NO3 chemistry in BB plumes emitted late in the day is responsible for 72 %–92 % (84 % in an optically thick midday plume) of nitrocatechol formation and controls nitrophenolic formation overall. As a result, overnight nitrophenolic formation pathways account for 56 %±2 % of NOx loss by sunrise the following day. In all but one overnight plume we modeled, there was remaining NOx (13 %–57 %) and BBVOCs (8 %–72 %) at sunrise
    corecore