973 research outputs found

    Denying humanness to victims: How gang members justify violent behavior

    Get PDF
    The high prevalence of violent offending amongst gang-involved youth has been established in the literature. Yet the underlying psychological mechanisms that enable youth to engage in such acts of violence remain unclear. 189 young people were recruited from areas in London, UK, known for their gang activity. We found that gang members, in comparison to non-gang youth, described the groups they belong to as having recognized leaders, specific rules and codes, initiation rituals, and special clothing. Gang members were also more likely than non-gang youth to engage in violent behavior and endorse moral disengagement strategies (i.e., moral justification, euphemistic language, advantageous comparison, displacement of responsibility, attribution of blame, and dehumanization). Finally, we found that dehumanizing victims partially mediated the relationship between gang membership and violent behavior. These findings highlight the effects of groups at the individual level and an underlying psychological mechanism that explains, in part, how gang members engage in violence

    The NASA Airborne Tropical TRopopause EXperiment (ATTREX):High-Altitude Aircraft Measurements in the Tropical Western Pacific

    Get PDF
    The February through March 2014 deployment of the NASA Airborne Tropical TRopopause EXperiment (ATTREX) provided unique in situ measurements in the western Pacific Tropical Tropopause Layer (TTL). Six flights were conducted from Guam with the long-range, high-altitude, unmanned Global Hawk aircraft. The ATTREX Global Hawk payload provided measurements of water vapor, meteorological conditions, cloud properties, tracer and chemical radical concentrations, and radiative fluxes. The campaign was partially coincident with the CONTRAST and CAST airborne campaigns based in Guam using lower-altitude aircraft The ATTREX dataset is being used for investigations of TTL cloud, transport, dynamical, and chemical processes as well as for evaluation and improvement of global-model representations of TTL processes

    The Role of Sulfur Dioxide in Stratospheric Aerosol Formation Evaluated by Using in situ Measurements in the Tropical Lower Stratosphere

    Get PDF
    Stratospheric aerosols (SAs) are a variable component of the Earth\u27s albedo that may be intentionally enhanced in the future to offset greenhouse gases (geoengineering). The role of tropospheric-sourced sulfur dioxide (SO2) in maintaining background SAs has been debated for decades without in situ measurements of SO2 at the tropical tropopause to inform this issue. Here we clarify the role of SO2 in maintaining SAs by using new in situ SO2 measurements to evaluate climate models and satellite retrievals. We then use the observed tropical tropopause SO2 mixing ratios to estimate the global flux of SO2 across the tropical tropopause. These analyses show that the tropopause background SO2 is about 5 times smaller than reported by the average satellite observations that have been used recently to test atmospheric models. This shifts the view of SO2 as a dominant source of SAs to a near-negligible one, possibly revealing a significant gap in the SA budget. ©2017. American Geophysical Union

    Probing the subtropical lowermost stratosphere and the tropical upper troposphere and tropopause layer for inorganic bromine

    Get PDF
    We report measurements of CH4 (measured in situ by the Harvard University Picarro Cavity Ringdown Spectrometer (HUPCRS) and NOAA Unmanned Aircraft System Chromatograph for Atmospheric Trace Species (UCATS) instruments), O3 (measured in situ by the NOAA dual-beam ultraviolet (UV) photometer), NO2, BrO (remotely detected by spectroscopic UV–visible (UV–vis) limb observations; see the companion paper of Stutz et al., 2016), and of some key brominated source gases in whole-air samples of the Global Hawk Whole Air Sampler (GWAS) instrument within the subtropical lowermost stratosphere (LS) and the tropical upper troposphere (UT) and tropopause layer (TTL). The measurements were performed within the framework of the NASA-ATTREX (National Aeronautics and Space Administration – Airborne Tropical Tropopause Experiment) project from aboard the Global Hawk (GH) during six deployments over the eastern Pacific in early 2013. These measurements are compared with TOMCAT/SLIMCAT (Toulouse Off-line Model of Chemistry And Transport/Single Layer Isentropic Model of Chemistry And Transport) 3-D model simulations, aiming at improvements of our understanding of the bromine budget and photochemistry in the LS, UT, and TTL. Changes in local O3 (and NO2 and BrO) due to transport processes are separated from photochemical processes in intercomparisons of measured and modeled CH4 and O3. After excellent agreement is achieved among measured and simulated CH4 and O3, measured and modeled [NO2] are found to closely agree with  ≤  15 ppt in the TTL (which is the detection limit) and within a typical range of 70 to 170 ppt in the subtropical LS during the daytime. Measured [BrO] ranges between 3 and 9 ppt in the subtropical LS. In the TTL, [BrO] reaches 0.5 ± 0.5 ppt at the bottom (150 hPa∕355 K∕14 km) and up to about 5 ppt at the top (70 hPa∕425 K∕18.5 km; see Fueglistaler et al., 2009 for the definition of the TTL used), in overall good agreement with the model simulations. Depending on the photochemical regime, the TOMCAT∕SLIMCAT simulations tend to slightly underpredict measured BrO for large BrO concentrations, i.e., in the upper TTL and LS. The measured BrO and modeled BrO ∕ Bryinorg ratio is further used to calculate inorganic bromine, Bryinorg. For the TTL (i.e., when [CH4]  ≥  1790 ppb), [Bryinorg] is found to increase from a mean of 2.63 ± 1.04 ppt for potential temperatures (θ) in the range of 350–360 K to 5.11 ± 1.57 ppt for θ  = 390 − 400 K, whereas in the subtropical LS (i.e., when [CH4]  ≤  1790 ppb), it reaches 7.66 ± 2.95 ppt for θ in the range of 390–400 K. Finally, for the eastern Pacific (170–90° W), the TOMCAT/SLIMCAT simulations indicate a net loss of ozone of −0.3 ppbv day−1 at the base of the TTL (θ  =  355 K) and a net production of +1.8 ppbv day−1 in the upper part (θ  =  383 K)

    Bistability in Apoptosis by Receptor Clustering

    Get PDF
    Apoptosis is a highly regulated cell death mechanism involved in many physiological processes. A key component of extrinsically activated apoptosis is the death receptor Fas, which, on binding to its cognate ligand FasL, oligomerize to form the death-inducing signaling complex. Motivated by recent experimental data, we propose a mathematical model of death ligand-receptor dynamics where FasL acts as a clustering agent for Fas, which form locally stable signaling platforms through proximity-induced receptor interactions. Significantly, the model exhibits hysteresis, providing an upstream mechanism for bistability and robustness. At low receptor concentrations, the bistability is contingent on the trimerism of FasL. Moreover, irreversible bistability, representing a committed cell death decision, emerges at high concentrations, which may be achieved through receptor pre-association or localization onto membrane lipid rafts. Thus, our model provides a novel theory for these observed biological phenomena within the unified context of bistability. Importantly, as Fas interactions initiate the extrinsic apoptotic pathway, our model also suggests a mechanism by which cells may function as bistable life/death switches independently of any such dynamics in their downstream components. Our results highlight the role of death receptors in deciding cell fate and add to the signal processing capabilities attributed to receptor clustering.Comment: Accepted by PLoS Comput Bio

    Synthesis of new DPP-4 inhibitors based on a novel tricyclic scaffold

    Get PDF
    A novel molecular scaffold has been synthesized and its synthesis and incorporation into new analogues of biologically active molecules will be discussed. A comparison of the inhibitory activity of these compounds to the known type-2 diabetes compound (sitagliptin) against dipeptidyl peptidase-4 (DPP-4) will be shown

    Evaluation of range of motion restriction within the hip joint

    Get PDF
    In Total Hip Arthroplasty, determining the impingement free range of motion requirement is a complex task. This is because in the native hip, motion is restricted by both impingement as well as soft tissue restraint. The aim of this study is to determine a range of motion benchmark which can identify motions which are at risk from impingement and those which are constrained due to soft tissue. Two experimental methodologies were used to determine motions which were limited by impingement and those motions which were limited by both impingement and soft tissue restraint. By comparing these two experimental results, motions which were limited by impingement were able to be separated from those motions which were limited by soft tissue restraint. The results show motions in extension as well as flexion combined with adduction are limited by soft tissue restraint. Motions in flexion, flexion combined with abduction and adduction are at risk from osseous impingement. Consequently, these motions represent where the maximum likely damage will occur in femoroacetabular impingement or at most risk of prosthetic impingement in Total Hip Arthroplasty
    corecore