291 research outputs found

    Theory of bound polarons in oxide compounds

    Full text link
    We present a multilateral theoretical study of bound polarons in oxide compounds MgO and \alpha-Al_2O_3 (corundum). A continuum theory at arbitrary electron-phonon coupling is used for calculation of the energies of thermal dissociation, photoionization (optically induced release of an electron (hole) from the ground self-consistent state), as well as optical absorption to the non-relaxed excited states. Unlike the case of free strong-coupling polarons, where the ratio \kappa of the photoionization energy to the thermal dissociation energy was shown to be always equal to 3, here this ratio depends on the Froehlich coupling constant \alpha and the screened Coulomb interaction strength \beta. Reasonable variation of these two parameters has demonstrated that the magnitude of \kappa remains usually in the narrow interval from 1 to 2.5. This is in agreement with atomistic calculations and experimental data for hole O^- polarons bound to the cation vacancy in MgO. The thermal dissociation energy for the ground self-consistent state and the energy of the optically induced charge transfer process (hops of a hole between O^{2-} ions) have been calculated using the quantum-chemical method INDO. Results obtained within the two approaches for hole O−^- polarons bound by the cation vacancies (V^-) in MgO and by the Mg^{2+} impurity (V_{Mg}) in corundum are compared to experimental data and to each other. We discuss a surprising closeness of the results obtained on the basis of independent models and their agreement with experiment.Comment: 13 pages, 2 figures, 2 tables, E-mail addresses: [email protected], [email protected]

    Organic copolymer lasing from single defect microcavity fabricated using laser patterning

    Get PDF
    Reducing the lasing threshold in optically pumped organic lasers is a necessary component of the drive to develop an organic laser diode, as this may help mitigate the losses associated with electrical contacts and charge injection. In this study we show how increasing the binaphthyl (BN) spacer content in polydioctylfluorene (PFO) decreases its amplified spontaneous emission threshold (ASE) through the suppression of intermolecular interactions. Using co-polymers with low lasing thresholds, we use a laser patterning technique to fabricate physical defects (having a diameter of ∌2.5 ÎŒm) within a vertical microcavity. Such defects create additional lateral confinement, with this approach allowing us to reduce the lasing threshold from 11 ÎŒJ cm−2 to 7 ÎŒJ cm−2 and increase cavity Q-factor from 495 (planar cavity) to 2300. The enhanced performance and the stack structure of the defect microcavity show it is a promising architecture for an electrically-pumped laser device

    Divergent Responses in Growth and Nutritional Quality of Coastal Macroalgae to the Combination of Increased pCO\u3csub\u3e2\u3c/sub\u3e and Nutrients

    Get PDF
    Coastal ecosystems are subjected to global and local environmental stressors, including increased atmospheric carbon dioxide (CO2) (and subsequent ocean acidification) and nutrient loading. Here, we tested how two common macroalgal species in the Northwest Atlantic (Ulva spp. and Fucus vesiculosus Linneaus) respond to the combination of increased CO2 and nutrient loading. We utilized two levels of pCO2 with two levels of nutrients in a full factorial design, testing the growth rates and tissue quality of Ulva and Fucus grown for 21 days in monoculture and biculture. We found that the opportunistic, fast-growing Ulva exhibited increased growth rates under high pCO2 and high nutrients, with growth rates increasing three-fold above Ulva grown in ambient pCO2 and ambient nutrients. By contrast, Fucus growth rates were not impacted by either environmental factor. Both species exhibited a decline in carbon to nitrogen ratios (C:N) with elevated nutrients, but pCO2 concentration did not alter tissue quality in either species. Species grown in biculture exhibited similar growth rates to those in monoculture conditions, but Fucus C:N increased significantly when grown with Ulva, indicating an effect of the presence of Ulva on Fucus. Our results suggest that the combination of ocean acidification and nutrients will enhance abundance of opportunistic algal species in coastal systems and will likely drive macroalgal community shifts, based on species-specific responses to future conditions

    Contribution of Energetically Reactive Surface Features to the Dissolution of CeO2 and ThO2 Analogues for Spent Nuclear Fuel Microstructures

    Get PDF
    In the safety case for the geological disposal of nuclear waste, the release of radioactivity from the repository is controlled by the dissolution of the spent fuel in groundwater. There remain several uncertainties associated with understanding spent fuel dissolution, including the contribution of energetically reactive surface sites to the dissolution rate. In this study, we investigate how surface features influence the dissolution rate of synthetic CeO2 and ThO2, spent nuclear fuel analogues that approximate as closely as possible the microstructure characteristics of fuel-grade UO2 but are not sensitive to changes in oxidation state of the cation. The morphology of grain boundaries (natural features) and surface facets (specimen preparation-induced features) was investigated during dissolution. The effects of surface polishing on dissolution rate were also investigated. We show that preferential dissolution occurs at grain boundaries, resulting in grain boundary decohesion and enhanced dissolution rates. A strong crystallographic control was exerted, with high misorientation angle grain boundaries retreating more rapidly than those with low misorientation angles, which may be due to the accommodation of defects in the grain boundary structure. The data from these simplified analogue systems support the hypothesis that grain boundaries play a role in the so-called “instant release fraction” of spent fuel, and should be carefully considered, in conjunction with other chemical effects, in safety performance assessements for the geological disposal of spent fuel. Surface facets formed during the sample annealing process also exhibited a strong crystallographic control and were found to dissolve rapidly on initial contact with dissolution medium. Defects and strain induced during sample polishing caused an overestimation of the dissolution rate, by up to 3 orders of magnitude
    • 

    corecore