535 research outputs found

    Co-ordinate regulation of antibiotic and pigment production by the Serratia Rap protein : evidence for a novel family of regulatory proteins

    Get PDF
    The enteric bacterium Serratia marcescens is an opportunistic human pathogen. The strain studied here makes the red pigment prodigiosin (Pig) and the ß-lactam antibiotic (5R)-carbapen-2-em-3 carboxylic acid. Mutants were isolated which were affected for pigment production. Approximately 20% of these mutants were also concomitantly deficient for the production of antibiotic. These mutants were presumed to be defective in the rap (regulation of antibiotic and pigment) gene. This study set out to investigate the rap gene which had been cloned by direct cosmid complementation of a Rap mutant from a cosmid library (pNRT300). Sequence analysis of the rap gene revealed a predicted product showing strong homology to S1yA, classified by Libby et al., (1994) as a virulence determinant in Salmonella. Homologues of the rap gene were detected in several genera including Salmonella, Yersinia, Enterobacter and species of the enteric plant pathogen Erwinia. The Erwinia horEc gene (homologue of rap) was cloned and encoded a product which was highly homologous to both the SlyA and Rap proteins. The gene arrangement around the rap locus in Erwinia was identical to that in Serratia in that rap and horEc were both situated upstream of two genes encoding homologues of the lipoprotein Pcp and a gene encoding a protein of unknown function from Yersinia enterocolitica. This observation led to the search for the Yersinia homologue of rap (horte) which was subsequently cloned and sequenced. This gene too encoded a protein highly homologous to Rap and HorE. Data base searches revealed that these proteins shared a significant level of homology with a number of bacterial protein regulators involved in exoenzyme production, virulence in plant and human pathogens, multiple antibiotic resistance and xenobiotic catabolism. The findings of this study cast serious doubt on the conclusions of Libby et al., (1994) and in a recent report which was published whilst this thesis was being compiled, Ludwig et al., (1995) reclassified S1yA as a regulatory protein capable of activating cryptic haemolysin genes in Escherichia coll. Marker exchange mutants (horEc:k: anR) of the Envinia carotovora subspecies carotovora were found to be affected in the production of a carbapenem antibiotic and showed decreased levels of production of multiple exoenzyme virulence factors. Transcriptional fusion data revealed that the horEc mutation affected the transcription of carA a carbapenem biosynthetic gene. Antibiotic and exoenzymes are known to be regulated by a small molecule dependent regulatory system analogous to the Lux system controlling bioluminescence in Photobacterium fischeri. The results of regulatory studies in which autoinducer was added exogenously, or carR was added in trans imply a role for HorE in this pheromone-signalling system. The functional expression of prodigiosin in a Erwinia carotovora subspecies carotovora was found to be dependent on autoinducer and the gene product of horEc. Some interesting observations were also made regarding differential patterns of prodigiosin gene expression within bacterial colonies. These patterning effects were strikingly strain-specific

    Type II and type IV toxin–antitoxin systems show different evolutionary patterns in the global Klebsiella pneumoniae population

    Get PDF
    The Klebsiella pneumoniae species complex includes important opportunistic pathogens which have become public health priorities linked to major hospital outbreaks and the recent emergence of multidrug-resistant hypervirulent strains. Bacterial virulence and the spread of multidrug resistance have previously been linked to toxin-antitoxin (TA) systems. TA systems encode a toxin that disrupts essential cellular processes, and a cognate antitoxin which counteracts this activity. Whilst associated with the maintenance of plasmids, they also act in bacterial immunity and antibiotic tolerance. However, the evolutionary dynamics and distribution of TA systems in clinical pathogens are not well understood. Here we present a comprehensive survey and description of the diversity of TA systems in 259 clinically relevant genomes of K. pneumoniae. We show that TA systems are highly prevalent with a median of 20 loci per strain. Importantly, these toxins differ substantially in their distribution patterns and in their range of cognate antitoxins. Classification along these properties suggests different roles of TA systems and highlights the association and co-evolution of toxins and antitoxins

    Diagnostics for Yaws Eradication: Insights From Direct Next-Generation Sequencing of Cutaneous Strains of Treponema pallidum.

    Get PDF
    Background: Yaws-like chronic ulcers can be caused by Treponema pallidum subspecies pertenue, Haemophilus ducreyi, or other, still-undefined bacteria. To permit accurate evaluation of yaws elimination efforts, programmatic use of molecular diagnostics is required. The accuracy and sensitivity of current tools remain unclear because our understanding of T. pallidum diversity is limited by the low number of sequenced genomes. Methods: We tested samples from patients with suspected yaws collected in the Solomon Islands and Ghana. All samples were from patients whose lesions had previously tested negative using the Centers for Disease Control and Prevention (CDC) diagnostic assay in widespread use. However, some of these patients had positive serological assays for yaws on blood. We used direct whole-genome sequencing to identify T. pallidum subsp pertenue strains missed by the current assay. Results: From 45 Solomon Islands and 27 Ghanaian samples, 11 were positive for T. pallidum DNA using the species-wide quantitative polymerase chain reaction (PCR) assay, from which we obtained 6 previously undetected T. pallidum subsp pertenue whole-genome sequences. These show that Solomon Islands sequences represent distinct T. pallidum subsp pertenue clades. These isolates were invisible to the CDC diagnostic PCR assay, due to sequence variation in the primer binding site. Conclusions: Our data double the number of published T. pallidum subsp pertenue genomes. We show that Solomon Islands strains are undetectable by the PCR used in many studies and by health ministries. This assay is therefore not adequate for the eradication program. Next-generation genome sequence data are essential for these efforts

    Fgf receptor 3 activation promotes selective growth and expansion of occipitotemporal cortex

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Fibroblast growth factors (Fgfs) are important regulators of cerebral cortex development. Fgf2, Fgf8 and Fgf17 promote growth and specification of rostromedial (frontoparietal) cortical areas. Recently, the function of Fgf15 in antagonizing Fgf8 in the rostral signaling center was also reported. However, regulation of caudal area formation by Fgf signaling remains unknown.</p> <p>Results</p> <p>In mutant mice with constitutive activation of Fgf receptor 3 (Fgfr3) in the forebrain, surface area of the caudolateral cortex was markedly expanded at early postnatal stage, while rostromedial surface area remained normal. Cortical thickness was also increased in caudal regions. The expression domain and levels of Fgf8, as well as overall patterning, were unchanged. In contrast, the changes in caudolateral surface area were associated with accelerated cell cycle in early stages of neurogenesis without an alteration of cell cycle exit. Moreover, a marked overproduction of intermediate neuronal progenitors was observed in later stages, indicating prolongation of neurogenesis.</p> <p>Conclusion</p> <p>Activation of Fgfr3 selectively promotes growth of caudolateral (occipitotemporal) cortex. These observations support the 'radial unit' and 'radial amplification' hypotheses and may explain premature sulcation of the occipitotemporal cortex in thanatophoric dysplasia, a human <it>FGFR3 </it>disorder. Together with previous work, this study suggests that formation of rostral and caudal areas are differentially regulated by Fgf signaling in the cerebral cortex.</p

    SLING: a tool to search for linked genes in bacterial datasets.

    Get PDF
    Gene arrays and operons that encode functionally linked proteins form the most basic unit of transcriptional regulation in bacteria. Rules that govern the order and orientation of genes in these systems have been defined; however, these were based on a small set of genomes that may not be representative. The growing availability of large genomic datasets presents an opportunity to test these rules, to define the full range and diversity of these systems, and to understand their evolution. Here we present SLING, a tool to Search for LINked Genes by searching for a single functionally essential gene, along with its neighbours in a rule-defined proximity (https://github.com/ghoresh11/sling/wiki). Examining this subset of genes enables us to understand the basic diversity of these genetic systems in large datasets. We demonstrate the utility of SLING on a clinical collection of enteropathogenic Escherichia coli for two relevant operons: toxin antitoxin (TA) systems and RND efflux pumps. By examining the diversity of these systems, we gain insight on distinct classes of operons which present variable levels of prevalence and ability to be lost or gained. The importance of this analysis is not limited to TA systems and RND pumps, and can be expanded to understand the diversity of many other relevant gene arrays

    Genomic landscape of extended-spectrum β-lactamase resistance in Escherichia coli from an urban African setting

    Get PDF
    Objectives: Efforts to treat Escherichia coli infections are increasingly being compromised by the rapid, global spread of antimicrobial resistance (AMR). Whilst AMR in E. coli has been extensively investigated in resource-rich settings, in sub-Saharan Africa molecular patterns of AMR are not well described. In this study, we have begun to explore the population structure and molecular determinants of AMR amongst E. coli isolates from Malawi. Methods: Ninety-four E. coli isolates from patients admitted to Queen’s Hospital, Malawi, were whole-genome sequenced. The isolates were selected on the basis of diversity of phenotypic resistance profiles and clinical source of isolation (blood, CSF and rectal swab). Sequence data were analysed using comparative genomics and phylogenetics. Results: Our results revealed the presence of five clades, which were strongly associated with E. coli phylogroups A, B1, B2, D and F. We identified 43 multilocus STs, of which ST131 (14.9%) and ST12 (9.6%) were the most common. We identified 25 AMR genes. The most common ESBL gene was blaCTX-M-15 and it was present in all five phylogroups and 11 STs, and most commonly detected in ST391 (4/4 isolates), ST648 (3/3 isolates) and ST131 [3/14 (21.4%) isolates]. Conclusions: This study has revealed a high diversity of lineages associated with AMR, including ESBL and fluoroquinolone resistance, in Malawi. The data highlight the value of longitudinal bacteraemia surveillance coupled with detailed molecular epidemiology in all settings, including low-income settings, in describing the global epidemiology of ESBL resistance

    A simple method for directional transcriptome sequencing using Illumina technology.

    Get PDF
    High-throughput sequencing of cDNA has been used to study eukaryotic transcription on a genome-wide scale to single base pair resolution. In order to compensate for the high ribonuclease activity in bacterial cells, we have devised an equivalent technique optimized for studying complete prokaryotic transcriptomes that minimizes the manipulation of the RNA sample. This new approach uses Illumina technology to sequence single-stranded (ss) cDNA, generating information on both the direction and level of transcription throughout the genome. The protocol, and associated data analysis programs, are freely available from http://www.sanger.ac.uk/Projects/Pathogens/Transcriptome/. We have successfully applied this method to the bacterial pathogens Salmonella bongori and Streptococcus pneumoniae and the yeast Schizosaccharomyces pombe. This method enables experimental validation of genetic features predicted in silico and allows the easy identification of novel transcripts throughout the genome. We also show that there is a high correlation between the level of gene expression calculated from ss-cDNA and double-stranded-cDNA sequencing, indicting that ss-cDNA sequencing is both robust and appropriate for use in quantitative studies of transcription. Hence, this simple method should prove a useful tool in aiding genome annotation and gene expression studies in both prokaryotes and eukaryotes

    Loss of microbial diversity and pathogen domination of the gut microbiota in critically ill patients

    Get PDF
    Among long-stay critically ill patients in the adult intensive care unit (ICU), there are often marked changes in the complexity of the gut microbiota. However, it remains unclear whether such patients might benefit from enhanced surveillance or from interventions targeting the gut microbiota or the pathogens therein. We therefore undertook a prospective observational study of 24 ICU patients, in which serial faecal samples were subjected to shotgun metagenomic sequencing, phylogenetic profiling and microbial genome analyses. Two-thirds of the patients experienced a marked drop in gut microbial diversity (to an inverse Simpson's index of <4) at some stage during their stay in the ICU, often accompanied by the absence or loss of potentially beneficial bacteria. Intravenous administration of the broad-spectrum antimicrobial agent meropenem was significantly associated with loss of gut microbial diversity, but the administration of other antibiotics, including piperacillin/tazobactam, failed to trigger statistically detectable changes in microbial diversity. In three-quarters of ICU patients, we documented episodes of gut domination by pathogenic strains, with evidence of cryptic nosocomial transmission of Enterococcus faecium. In some patients, we also saw an increase in the relative abundance of apparent commensal organisms in the gut microbiome, including the archaeal species Methanobrevibacter smithii. In conclusion, we have documented a dramatic absence of microbial diversity and pathogen domination of the gut microbiota in a high proportion of critically ill patients using shotgun metagenomics

    Acute involution in the tammar wallaby : identification of genes and putative novel milk proteins implicated in mammary gland function

    Get PDF
    AbstractMarsupials provide a suitable alternative model to studying mammary gland involution. They have evolved a different reproductive strategy from eutherians, giving birth to an altricial young and secreting milk that changes in composition during lactation. In this study, we used a marsupial-specific EST microarray to identify 47 up-regulated genes during mammary gland involution in the tammar wallaby (Macropus eugenii). These include the pro-apoptotic tumour necrosis factor receptor superfamily 21 (TNFRSF21) gene, whose expression in the mammary gland has not previously been reported. Genes encoding putative novel milk proteins which may protect the mammary gland from infection were also found to be up-regulated, such as amiloride binding protein 1 (ABP1), complement component 1QB (C1QB), complement component 4A (C4A) and colony stimulating factor 2 receptor β (CSF2Rβ). Our results show that the marsupial reproductive strategy was successfully exploited to identify genes and putative novel milk proteins implicated in mammary gland involution
    corecore