1,450 research outputs found

    Synthetic mean-field interactions in photonic lattices

    No full text
    Photonic lattices are usually considered to be limited by their lack of methods to include interactions. We address this issue by introducing mean-field interactions through optical components which are external to the photonic lattice. The proposed technique to realise mean-field interacting photonic lattices relies on a Suzuki-Trotter decomposition of the unitary evolution for the full Hamiltonian. The technique realises the dynamics in an analogous way to that of a step-wise numerical implementation of quantum dynamics, in the spirit of digital quantum simulation. It is a very versatile technique which allows for the emulation of interactions that do not only depend on inter-particle separations or do not decay with particle separation. We detail the proposed experimental scheme and consider two examples of interacting phenomena, self-trapping and the decay of Bloch oscillations, that are observable with the proposed technique

    Molecular interactions of Escherichia coli ExoIX and identification of its associated 3â€Č–5â€Č exonuclease activity

    Get PDF
    The flap endonucleases (FENs) participate in a wide range of processes involving the structure-specific cleavage of branched nucleic acids. They are also able to hydrolyse DNA and RNA substrates from the 5â€Č-end, liberating mono-, di- and polynucleotides terminating with a 5â€Č phosphate. Exonuclease IX is a paralogue of the small fragment of Escherichia coli DNA polymerase I, a FEN with which it shares 66% similarity. Here we show that both glutathione-S-transferase-tagged and native recombinant ExoIX are able to interact with the E. coli single-stranded DNA binding protein, SSB. Immobilized ExoIX was able to recover SSB from E. coli lysates both in the presence and absence of DNA. In vitro cross-linking studies carried out in the absence of DNA showed that the SSB tetramer appears to bind up to two molecules of ExoIX. Furthermore, we found that a 3â€Č–5â€Č exodeoxyribonuclease activity previously associated with ExoIX can be separated from it by extensive liquid chromatography. The associated 3â€Č–5â€Č exodeoxyribonuclease activity was excised from a 2D gel and identified as exonuclease III using matrix-assisted laser-desorption ionization mass spectrometry

    A dominant magnetic dipole for the evolved Ap star candidate EK Eridani

    Full text link
    EK Eri is one of the most slowly rotating active giants known, and has been proposed to be the descendant of a strongly magnetic Ap star. We have performed a spectropolarimetric study of EK Eri over 4 photometric periods with the aim of inferring the topology of its magnetic field. We used the NARVAL spectropolarimeter at the Bernard Lyot telescope at the Pic du Midi Observatory, along with the least-squares deconvolution method, to extract high signal-to-noise ratio Stokes V profiles from a timeseries of 28 polarisation spectra. We have derived the surface-averaged longitudinal magnetic field Bl. We fit the Stokes V profiles with a model of the large-scale magnetic field and obtained Zeeman Doppler images of the surface magnetic strength and geometry. Bl variations of up to about 80 G are observed without any reversal of its sign, and which are in phase with photometric ephemeris. The activity indicators are shown to vary smoothly on a timescale compatible with the rotational period inferred from photometry (308.8 d.), however large deviations can occur from one rotation to another. The surface magnetic field variations of EK Eri appear to be dominated by a strong magnetic spot (of negative polarity) which is phased with the dark (cool) photometric spot. Our modeling shows that the large-scale magnetic field of EK Eri is strongly poloidal. For a rotational axis inclination of i = 60{\deg}, we obtain a model that is almost purely dipolar. In the dipolar model, the strong magnetic/photometric spot corresponds to the negative pole of the dipole, which could be the remnant of that of an Ap star progenitor of EK Eri. Our observations and modeling conceptually support this hypothesis, suggesting an explanation of the outstanding magnetic properties of EK Eri as the result of interaction between deep convection and the remnant of an Ap star magnetic dipole.Comment: 8 pages, 6 figures, accepted for publication in Astronomy & Astrophysic

    Imaging of the protoelliptical NGC 1700 and its globular cluster system

    Full text link
    An excellent candidate for a young elliptical, or `protoelliptical' galaxy is NGC 1700. Here we present new B, V and I band imaging using the Keck telescope and reanalyse existing V and I band images from the Hubble Space Telescope. After subtracting a model of the galaxy from the Keck images NGC 1700 reveals two symmetric tidal tail-like structures. If this interpretation is correct, it suggests a past merger event involving two spiral galaxies. These tails are largely responsible for the `boxiness' of the galaxy isophotes observed at a radius of about 13 kpc. We also show that the B-I colour distribution of the globular cluster system is bimodal. The mean colour of the blue population is consistent with those of old Galactic globular clusters. Relative to this old, metal poor population, we find that the red population is younger and more metal rich. This young population has a similar age and metallicity as that inferred for the central stars, suggesting that they are both associated with an episode of star formation triggered by the merger that may have formed the galaxy. Although possessing large errors, we find that the majority of the age estimates of NGC 1700 are reasonably consistent and we adopt a `best estimate' for the age of 3.0 +/-1.0 Gyr. This relatively young age places NGC 1700 within the age range where there is a notable lack of obvious candidates for protoellipticals. The total globular cluster specific frequency is rather low for a typical elliptical, even after taking into account fading of the galaxy over the next 10 Gyr. We speculate that NGC 1700 will eventually form a relatively `globular cluster poor' elliptical galaxy.Comment: 15 pages, 15 figures, accepted for publication in MNRA

    Uniqueness in MHD in divergence form: right nullvectors and well-posedness

    Full text link
    Magnetohydrodynamics in divergence form describes a hyperbolic system of covariant and constraint-free equations. It comprises a linear combination of an algebraic constraint and Faraday's equations. Here, we study the problem of well-posedness, and identify a preferred linear combination in this divergence formulation. The limit of weak magnetic fields shows the slow magnetosonic and Alfven waves to bifurcate from the contact discontinuity (entropy waves), while the fast magnetosonic wave is a regular perturbation of the hydrodynamical sound speed. These results are further reported as a starting point for characteristic based shock capturing schemes for simulations with ultra-relativistic shocks in magnetized relativistic fluids.Comment: To appear in J Math Phy

    The influence of acceptor anneal temperature on the performance of InGaN/GaN quantum well light-emitting diodes

    Get PDF
    Temperature-dependent measurements of the pulsed light-current characteristics of InGaN light-emitting diodes that were thermally annealed at different temperatures have been investigated. A distinct light output, at a fixed current density, with operating temperature arises where the light output increases as the operating temperature is reduced from 300 K, reaches a maximum, and then decreases with subsequent reductions of the operating temperature. We observe that light-emitting diodes thermally annealed at higher temperatures, which is believed to increase the number of electrically activated acceptors in the layers, have a lower light output below 300 K and the maximum light output shifts to higher operating temperatures. Measured absorption and emission spectra show that the thermal anneal process has not affected the structure of the quantum wells within these samples. The light output, for a fixed current density, has been simulated as a function of operating temperature, and we find that by changing the concentration of acceptor atoms, compensating donor atoms, and the hole mobility in the layers, the trends observed experimentally can be reproduced. On the basis of the simulations we find that the distinct behavior of the light output with operating temperature is due to the combination of Shockley-Reed-Hall recombination, at operating temperatures around 300 K, and electron drift leakage, at operating temperature below 300 K, and the increase of the acceptor concentration results in an increased electron drift leakage due to the change of the concomitant hole mobility. The simulations support the view that the experimental observations can be explained through changes of the acceptor concentration in the layers when the thermal anneal temperature is increased

    Diverse interventions that extend mouse lifespan suppress shared age-associated epigenetic changes at critical gene regulatory regions

    Get PDF
    Background: Age-associated epigenetic changes are implicated in aging. Notably, age-associated DNA methylation changes comprise a so-called aging “clock”, a robust biomarker of aging. However, while genetic, dietary and drug interventions can extend lifespan, their impact on the epigenome is uncharacterised. To fill this knowledge gap, we defined age-associated DNA methylation changes at the whole-genome, single-nucleotide level in mouse liver and tested the impact of longevity-promoting interventions, specifically the Ames dwarf Prop1 df/df mutation, calorie restriction and rapamycin. Results: In wild-type mice fed an unsupplemented ad libitum diet, age-associated hypomethylation was enriched at super-enhancers in highly expressed genes critical for liver function. Genes harbouring hypomethylated enhancers were enriched for genes that change expression with age. Hypermethylation was enriched at CpG islands marked with bivalent activating and repressing histone modifications and resembled hypermethylation in liver cancer. Age-associated methylation changes are suppressed in Ames dwarf and calorie restricted mice and more selectively and less specifically in rapamycin treated mice. Conclusions: Age-associated hypo- and hypermethylation events occur at distinct regulatory features of the genome. Distinct longevity-promoting interventions, specifically genetic, dietary and drug interventions, suppress some age-associated methylation changes, consistent with the idea that these interventions exert their beneficial effects, in part, by modulation of the epigenome. This study is a foundation to understand the epigenetic contribution to healthy aging and longevity and the molecular basis of the DNA methylation clock

    Determination of the Piezoelectric Field in InGaN Quantum Wells

    Get PDF
    In many studies, the value of the experimentally determined internal piezoelectric field has been reported to be significantly smaller than theoretical values. We believe this is due to an inappropriate approximation for the electric field within the depletion region, which is used in the analysis of experimental data, and we propose an alternative method. Using this alternative, we have measured the strength of the internal field of InGaN p-i-n structures, using reverse bias photocurrent absorption spectroscopy and by fitting the bias dependent peak energy using microscopic theory based on the screened Hartree-Fock approximation. The results agree with those using material constants interpolated from binary values
    • 

    corecore