1,320 research outputs found
Tumor Biomechanical Stiffness by Magnetic Resonance Elastography Predicts Surgical Outcomes and Identifies Biomarkers in Vestibular Schwannoma and Meningioma
Variations in the biomechanical stiffness of brain tumors can not only influence the difficulty of surgical resection but also impact postoperative outcomes. In a prospective, single-blinded study, we utilize pre-operative magnetic resonance elastography (MRE) to predict the stiffness of intracranial tumors intraoperatively and assess the impact of increased tumor stiffness on clinical outcomes following microsurgical resection of vestibular schwannomas (VS) and meningiomas. MRE measurements significantly correlated with intraoperative tumor stiffness and baseline hearing status of VS patients. Additionally, MRE stiffness was elevated in patients that underwent sub-total tumor resection compared to gross total resection and those with worse postoperative facial nerve function. Furthermore, we identify tumor microenvironment biomarkers of increased stiffness, including αSMA + myogenic fibroblasts, CD163 + macrophages, and HABP (hyaluronic acid binding protein). In a human VS cell line, a dose-dependent upregulation of HAS1-3, enzymes responsible for hyaluronan synthesis, was observed following stimulation with TNFα, a proinflammatory cytokine present in VS. Taken together, MRE is an accurate, non-invasive predictor of tumor stiffness in VS and meningiomas. VS with increased stiffness portends worse preoperative hearing and poorer postoperative outcomes. Moreover, inflammation-mediated hyaluronan deposition may lead to increased stiffness
Tetraspanin (TSP-17) Protects Dopaminergic Neurons against 6-OHDA-Induced Neurodegeneration in <i>C. elegans</i>
Parkinson's disease (PD), the second most prevalent neurodegenerative disease after Alzheimer's disease, is linked to the gradual loss of dopaminergic neurons in the substantia nigra. Disease loci causing hereditary forms of PD are known, but most cases are attributable to a combination of genetic and environmental risk factors. Increased incidence of PD is associated with rural living and pesticide exposure, and dopaminergic neurodegeneration can be triggered by neurotoxins such as 6-hydroxydopamine (6-OHDA). In C. elegans, this drug is taken up by the presynaptic dopamine reuptake transporter (DAT-1) and causes selective death of the eight dopaminergic neurons of the adult hermaphrodite. Using a forward genetic approach to find genes that protect against 6-OHDA-mediated neurodegeneration, we identified tsp-17, which encodes a member of the tetraspanin family of membrane proteins. We show that TSP-17 is expressed in dopaminergic neurons and provide genetic, pharmacological and biochemical evidence that it inhibits DAT-1, thus leading to increased 6-OHDA uptake in tsp-17 loss-of-function mutants. TSP-17 also protects against toxicity conferred by excessive intracellular dopamine. We provide genetic and biochemical evidence that TSP-17 acts partly via the DOP-2 dopamine receptor to negatively regulate DAT-1. tsp-17 mutants also have subtle behavioral phenotypes, some of which are conferred by aberrant dopamine signaling. Incubating mutant worms in liquid medium leads to swimming-induced paralysis. In the L1 larval stage, this phenotype is linked to lethality and cannot be rescued by a dop-3 null mutant. In contrast, mild paralysis occurring in the L4 larval stage is suppressed by dop-3, suggesting defects in dopaminergic signaling. In summary, we show that TSP-17 protects against neurodegeneration and has a role in modulating behaviors linked to dopamine signaling
Neoadjuvant Chemoradiotherapy for Esophageal Cancer: A Review of Meta-Analyses
Background: Most randomized controlled trials (RCTs) that have compared neoadjuvant chemoradiation followed by surgery with surgery alone for locally advanced esophageal cancer have shown no difference in survival between the two treatments. Meta-analyses on neoadjuvant chemoradiation in esophageal cancer, however, are discordant. Methods: For the present study, published meta-analyses on neoadjuvant chemoradiation for esophageal cancer were identified from the PubMed database and critically appraised in order to make a judgment on the applicability of neoadjuvant chemoradiation in clinical practice and decision making. Results: Two of the six meta-analyses examined did not show a significant survival benefit in patients with resectable esophageal cancer. Differences in the studies included and statistical methods applied might account for this. Moreover, there was heterogeneity between the RCTs included in the meta-analyses with regard to the patients included, tumor histology, and radiotherapy and chemotherapy regimes. Also, surgical technique was not uniform. No data on individual patients were available for most meta-analyses. The RCTs included in the meta-analyses were of inadequate sample size. All were started in the nineties, and hence methods for diagnosis, staging, treatment delivery, and outcome measurement reflect clinical practice during that decade. Conclusions: The current data on neoadjuvant chemoradiation for esophageal cancer strongly indicate the need for designing future high-quality trials that will contribute to a better understanding of the role of neoadjuvant treatment for resectable cancer of the esophagus and help to identify patient subgroups that would benefit most
The Medical Action Ontology: A tool for annotating and analyzing treatments and clinical management of human disease
\ua9 2023Background: Navigating the clinical literature to determine the optimal clinical management for rare diseases presents significant challenges. We introduce the Medical Action Ontology (MAxO), an ontology specifically designed to organize medical procedures, therapies, and interventions. Methods: MAxO incorporates logical structures that link MAxO terms to numerous other ontologies within the OBO Foundry. Term development involves a blend of manual and semi-automated processes. Additionally, we have generated annotations detailing diagnostic modalities for specific phenotypic abnormalities defined by the Human Phenotype Ontology (HPO). We introduce a web application, POET, that facilitates MAxO annotations for specific medical actions for diseases using the Mondo Disease Ontology. Findings: MAxO encompasses 1,757 terms spanning a wide range of biomedical domains, from human anatomy and investigations to the chemical and protein entities involved in biological processes. These terms annotate phenotypic features associated with specific disease (using HPO and Mondo). Presently, there are over 16,000 MAxO diagnostic annotations that target HPO terms. Through POET, we have created 413 MAxO annotations specifying treatments for 189 rare diseases. Conclusions: MAxO offers a computational representation of treatments and other actions taken for the clinical management of patients. Its development is closely coupled to Mondo and HPO, broadening the scope of our computational modeling of diseases and phenotypic features. We invite the community to contribute disease annotations using POET (https://poet.jax.org/). MAxO is available under the open-source CC-BY 4.0 license (https://github.com/monarch-initiative/MAxO). Funding: NHGRI 1U24HG011449-01A1 and NHGRI 5RM1HG010860-04
Ab Initio Identification of Novel Regulatory Elements in the Genome of Trypanosoma brucei by Bayesian Inference on Sequence Segmentation
Background: The rapid increase in the availability of genome information has created considerable demand for both comparative and ab initio predictive bioinformatic analyses. The biology laid bare in the genomes of many organisms is often novel, presenting new challenges for bioinformatic interrogation. A paradigm for this is the collected genomes of the kinetoplastid parasites, a group which includes Trypanosoma brucei the causative agent of human African trypanosomiasis. These genomes, though outwardly simple in organisation and gene content, have historically challenged many theories for gene expression regulation in eukaryotes. Methodology/Principle Findings: Here we utilise a Bayesian approach to identify local changes in nucleotide composition in the genome of T. brucei. We show that there are several elements which are found at the starts and ends of multicopy gene arrays and that there are compositional elements that are common to all intergenic regions. We also show that there is a composition-inversion element that occurs at the position of the trans-splice site. Conclusions/Significance: The nature of the elements discovered reinforces the hypothesis that context dependant RN
Antiferromagnetism and p‐type conductivity of nonstoichiometric nickel oxide thin films
Plasma‐enhanced atomic layer deposition was used to grow non‐stoichiometric nickel oxide thin films with low impurity content, high crystalline quality, and p‐type conductivity. Despite the non‐stoichiometry, the films retained the antiferromagnetic property of NiO
Regulation of mammary gland branching morphogenesis by the extracellular matrix and its remodeling enzymes.
A considerable body of research indicates that mammary gland branching morphogenesis is dependent, in part, on the extracellular matrix (ECM), ECM-receptors, such as integrins and other ECM receptors, and ECM-degrading enzymes, including matrix metalloproteinases (MMPs) and their inhibitors, tissue inhibitors of metalloproteinases (TIMPs). There is some evidence that these ECM cues affect one or more of the following processes: cell survival, polarity, proliferation, differentiation, adhesion, and migration. Both three-dimensional culture models and genetic manipulations of the mouse mammary gland have been used to study the signaling pathways that affect these processes. However, the precise mechanisms of ECM-directed mammary morphogenesis are not well understood. Mammary morphogenesis involves epithelial 'invasion' of adipose tissue, a process akin to invasion by breast cancer cells, although the former is a highly regulated developmental process. How these morphogenic pathways are integrated in the normal gland and how they become dysregulated and subverted in the progression of breast cancer also remain largely unanswered questions
Food Security in the South Pacific Island Countries with Special Reference to the Fiji Islands
This paper analyses the status of food security in selected South Pacific Island countries
Malten, a new synthetic molecule showing in vitro antiproliferative activity against tumour cells and induction of complex DNA structural alterations
Background:
Hydroxypyrones represent several classes of molecules known for their high synthetic versatility. This family of molecules shows several interesting pharmaceutical activities and is considered as a promising source of new anti neoplastic compounds.
Methods:
In the quest to identify new potential anti cancer agents, a new maltol (3-hydroxy-2-methyl-4-pyrone)-derived molecule, named malten (N,N′-bis((3-hydroxy-4-pyron-2-yl)methyl)-N,N′-dimethylethylendiamine), has been synthesised and analysed at both biological and molecular levels for its antiproliferative activity in eight tumour cell lines.
Results:
Malten exposure led to a dose-dependent reduction in cell survival in all the neoplastic models studied. Sublethal concentrations of malten induce profound cell cycle changes, particularly affecting the S and/or G2-M phases, whereas exposure to lethal doses causes the induction of programmed cell death (apopotosis). The molecular response to malten was also investigated in two biological models: JURKAT and U937 cells. It showed the modulation of genes having key roles in cell cycle progression and apoptosis. Finally, as part of the effort to clarify the action mechanism, we showed that malten is able to impair DNA electrophoretic mobility and drastically reduce both PCR amplificability and fragmentation susceptibility of DNA.
Conclusion:
Taken together, these results show that malten may exert its antiproliferative activity through the induction of complex DNA structural modifications. This evidence, together with the high synthetic versatility of maltol-derived compounds, makes malten an interesting molecular scaffold for the future design of new potential anticancer agents
Evidence for the h_b(1P) meson in the decay Upsilon(3S) --> pi0 h_b(1P)
Using a sample of 122 million Upsilon(3S) events recorded with the BaBar
detector at the PEP-II asymmetric-energy e+e- collider at SLAC, we search for
the spin-singlet partner of the P-wave chi_{bJ}(1P) states in the
sequential decay Upsilon(3S) --> pi0 h_b(1P), h_b(1P) --> gamma eta_b(1S). We
observe an excess of events above background in the distribution of the recoil
mass against the pi0 at mass 9902 +/- 4(stat.) +/- 2(syst.) MeV/c^2. The width
of the observed signal is consistent with experimental resolution, and its
significance is 3.1sigma, including systematic uncertainties. We obtain the
value (4.3 +/- 1.1(stat.) +/- 0.9(syst.)) x 10^{-4} for the product branching
fraction BF(Upsilon(3S)-->pi0 h_b) x BF(h_b-->gamma eta_b).Comment: 8 pages, 4 postscript figures, submitted to Phys. Rev. D (Rapid
Communications
- …