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Tetraspanin (TSP-17) Protects Dopaminergic Neurons
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Neda Masoudi¤b, Pablo Ibanez-Cruceyra.¤a, Sarah-Lena Offenburger., Alexander Holmes,

Anton Gartner*

Centre for Gene Regulation and Expression, University of Dundee, Dow Street, Dundee, United Kingdom

Abstract

Parkinson’s disease (PD), the second most prevalent neurodegenerative disease after Alzheimer’s disease, is linked to the
gradual loss of dopaminergic neurons in the substantia nigra. Disease loci causing hereditary forms of PD are known, but
most cases are attributable to a combination of genetic and environmental risk factors. Increased incidence of PD is
associated with rural living and pesticide exposure, and dopaminergic neurodegeneration can be triggered by neurotoxins
such as 6-hydroxydopamine (6-OHDA). In C. elegans, this drug is taken up by the presynaptic dopamine reuptake
transporter (DAT-1) and causes selective death of the eight dopaminergic neurons of the adult hermaphrodite. Using a
forward genetic approach to find genes that protect against 6-OHDA-mediated neurodegeneration, we identified tsp-17,
which encodes a member of the tetraspanin family of membrane proteins. We show that TSP-17 is expressed in
dopaminergic neurons and provide genetic, pharmacological and biochemical evidence that it inhibits DAT-1, thus leading
to increased 6-OHDA uptake in tsp-17 loss-of-function mutants. TSP-17 also protects against toxicity conferred by excessive
intracellular dopamine. We provide genetic and biochemical evidence that TSP-17 acts partly via the DOP-2 dopamine
receptor to negatively regulate DAT-1. tsp-17 mutants also have subtle behavioral phenotypes, some of which are conferred
by aberrant dopamine signaling. Incubating mutant worms in liquid medium leads to swimming-induced paralysis. In the L1
larval stage, this phenotype is linked to lethality and cannot be rescued by a dop-3 null mutant. In contrast, mild paralysis
occurring in the L4 larval stage is suppressed by dop-3, suggesting defects in dopaminergic signaling. In summary, we show
that TSP-17 protects against neurodegeneration and has a role in modulating behaviors linked to dopamine signaling.
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Introduction

Parkinson’s Disease (PD) is the second most common neurode-

generative disease, after Alzheimer’s disease, and affects ,2% of

the population aged over 65 years. Loss of dopaminergic neurons

is a pathological hallmark of PD [1,2] and aspects of this

neurodegeneration have been modeled in C. elegans [3,4]. The

etiology of PD is largely unknown and its heritability is generally

rather low; however ,5–10% of cases are associated with

monogenetically inherited mutations [5]. Approximately 15

disease loci are known, most of which are conserved in C. elegans
[6,7]. The vast majority of PD cases are ‘sporadic’ with no clear

family history. Besides aging, epidemiological studies have shown

risk factors for ‘sporadic’ PD to include a long-term history of rural

living, farming, well-water drinking and pesticide exposure. The

most extreme examples of toxin-induced PD-like symptoms were

linked to the accidental exposure to MPTP (N-methyl-4-phenyl-

1,2,3,6-tetrahydropyridine). Similar to sporadic PD cases, PD-like

symptoms resulting from MPTP exposure could be alleviated by

administration of the dopamine precursor L-3,4-dihydrooxyphe-

nylalanine (L-DOPA) [8]. Exposure to pesticides such as paraquat

and rotenone has also been implicated in PD development [9].

The disease is therefore thought to be triggered by a combination

of environmental factors and genetic susceptibility [5].

MPTP, paraquat and rotenone all block the mitochondrial

electron transport chain, leading to oxidative damage [10], and

have been extensively used to model PD neurodegeneration. 6-

Hydroxydopamine (6-OHDA), an oxidation product of dopamine,

is another neurotoxin widely used in mammalian PD models to

induce the specific degeneration of dopaminergic neurons [11]. 6-

OHDA was initially identified as a metabolite of dopamine [12],

and there is some evidence that 6-OHDA exposure might be

PLOS Genetics | www.plosgenetics.org 1 December 2014 | Volume 10 | Issue 12 | e1004767

http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pgen.1004767&domain=pdf


linked to PD. 6-OHDA was also identified as a naturally occurring

amine in human urine, and has been detected at higher

concentrations in PD patients [13]. Furthermore, high 6-OHDA

levels were found in postmortem brain samples from PD patients

[14]. It has been reported that 6-OHDA interaction with oxygen

results in the production of reactive oxygen species (ROS), which

in turn trigger free radical-mediated neuronal degeneration [2,12].

Other dopamine metabolites may also cause oxidative damage

[15]. Nevertheless, the mechanism by which 6-OHDA induces

neuronal degeneration remains largely unknown [16].

Although there is no treatment to prevent or halt neuronal loss,

L-DOPA administration is still one of the most effective treatments

for alleviating PD symptoms [17,18]. However, the effectiveness of

L-DOPA declines over time. Prolonged L-DOPA treatment is also

potentially neurotoxic [11,15]. Although not confirmed in a large

longitudinal study of L-DOPA use in PD patients (ELLDOPA

trial), this nevertheless remains a major concern [19].

C. elegans has been used as a model to study the structure and

function of the nervous system, which in hermaphrodite worms

consists of 302 neurons [20,21]. C. elegans dopaminergic neurons

are functionally related to those of humans. The genes driving the

biochemical processes involved in dopamine metabolism (as well

as most PD-associated loci) [6] are also highly conserved in worms

[22]. Dopaminergic neurons can be readily visualized in vivo using

appropriate GFP markers. Analogous to vertebrate systems,

dopaminergic neurons undergo neurodegeneration upon treat-

ment with 6-OHDA. It has been shown that 6-OHDA can enter

dopaminergic neurons through the DAT-1 dopamine transporter

and thus trigger their degeneration [3]. The exact type of cellular

death that occurs following 6-OHDA intoxication is unknown.

Electron microscopy has shown apoptotic-like condensed chro-

matin structures in dying neurons, suggesting that 6-OHDA

induces apoptosis. However, 6-OHDA-induced neurodegenera-

tion in C. elegans is independent of CED-4/Apaf1 and CED-3/

caspase, two components of the core apoptotic machinery [3]. In

an independent study, inactivation of C. elegans autophagy genes

partially suppressed 6-OHDA-induced dopaminergic death, sug-

gesting that autophagy might also be involved in this process [23].

During synaptic transmission most of the released dopamine is

transported back into the presynaptic terminal by the dopamine

reuptake transporter (DAT1) (for a review, see [24]. Therefore,

activity of this transporter affects the duration and extent of

dopamine signaling. Mammalian cell experiments led to the

identification of several proteins that interact with DAT1 to

modulate its activity, cell surface expression and trafficking. These

include protein kinase C, dopamine D2 receptors (discussed

below), SNCA and parkin [25–28]. The physiological actions of

dopamine are mediated by conserved seven-transmembrane

dopamine receptors, designated D1–5. Dopamine receptors are

coupled to guanosine triphosphate-binding proteins (G proteins)

and are classified into D1 or D2 type dopamine receptors based on

their antagonistic effect on adenylyl cyclase activity [29,30]. D1

dopamine receptors, DOP-1 in worms, are solely found in

postsynaptic dopamine-receptive cells, whereas in C. elegans the

D2 type receptors DOP-2 and DOP-3 are expressed pre and

postsynaptically, respectively [31–33].

In vertebrates, the dopamine system plays a crucial role in

regulating movement, reward and cognition. Dopamine-deficient

newborn mice die as a result of severe motor impairments [34,35].

In contrast, C. elegans mutants defective in dopamine synthesis are

viable, thus facilitating investigations into dopamine-mediated

behavior in these animals. Dopaminergic neurons in C. elegans
are required for specific, well-described and quantifiable behav-

iors, often associated with locomotion and feeding. For instance,

the basal slowing response allows worms to reduce their speed

when encountering a bacterial lawn, which is their food source

[36]. Another behavior mediated by dopamine signaling is

referred to as ‘‘swimming-induced paralysis’’ (SWIP): dat-1-

deficient worms exhibit rapid paralysis in liquid, unlike wild-type

controls [37].

Using an unbiased forward genetic approach we identified tsp-
17 as a gene that protects dopaminergic neurons from 6–OHDA-

mediated neurodegeneration. We provide evidence that TSP-17

regulates DAT-1 transporter activity. Furthermore, our results

suggest that DAT-1 regulation by TSP-17 is partly mediated by

D2 dopamine receptors.

Results

In order to find genes that protect dopaminergic neurons, we

performed a genetic screen for mutants conferring hypersensitivity

to 6-OHDA. By adapting procedures initially established by Nass

et al. [3] and using the same pdat-1::GFP reporter that highlights

dopaminergic neurons, we screened ,2500 F2 ethyl methanesul-

fonate (EMS)-mutagenized worms at the L1 developmental stage

by incubating with 10 mM 6-OHDA for 1 h. This procedure,

which is based on reduced, altered, or absent pdat-1::GFP
expression, does not lead to neurodegeneration in .95% of wild-

type worms, thus allowing the identification of mutants conferring

hypersensitivity to 6-OHDA. Of the initial five mutant candidates,

only gt1681 maintained a strong hypersensitive phenotype upon

backcrossing (Figure 1A, Figure S1). 6-OHDA-induced degener-

ation of both wild-type and gt1681 neurons exhibits the same

morphological features and pattern of degeneration initially

described by Nass et al. [3]. Axonal blebbing becomes apparent

(Figure 1B, inset, arrows) a feature also consistent with morpho-

logical changes previously observed by electron microscopy.

Worms were scored 24, 48 and 72 h after intoxication. Neurons

were lost in less than 10% of wild-type worms after 72 h. In

contrast, all dopaminergic neurons were lost in ,40% of gt1681
worms and partial dopaminergic loss was observed in an

additional ,30% of mutant worms after only 24 h (Figure 1A).

The extent of neurodegeneration was further increased 72 h after

intoxication, with ,90% of worms displaying total dopaminergic

Author Summary

Parkinson’s disease (PD) is characterized by the progressive
loss of dopaminergic neurons. While hereditary forms are
known, most cases are attributable to a combination of
genetic and environmental risk factors. In PD models,
dopaminergic neurodegeneration can be triggered by
neurotoxins such as 6-hydroxydopamine (6-OHDA). This
drug, which is taken up by the presynaptic dopamine
reuptake transporter (DAT-1), also causes the selective
death of C. elegans dopaminergic neurons. We found that
TSP-17, a member of the tetraspanin family of membrane
proteins, protects dopaminergic neurons from 6-OHDA-
induced degeneration. We provide evidence that TSP-17
inhibits the C. elegans dopamine transporter DAT-1,
leading to increased neuronal 6-OHDA uptake in tsp-17
mutants. TSP-17 also protects against toxicity conferred by
excessive intracellular dopamine. TSP-17 interacts with the
DOP-2 dopamine receptor, possibly as part of a pathway
that negatively regulates DAT-1. tsp-17 mutants have
subtle behavioral phenotypes that are partly conferred by
aberrant dopamine signaling. In summary, we have used C.
elegans genetics to model key aspects of PD.

Neuroprotection by the TSP-17 Tetraspanin in C. elegans
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loss at the adult stage (Figure 1A). Enhanced neurodegeneration in

the gt1681 background, albeit to a lesser extent, also occurred in

L2, L3 and L4 larvae treated with 6-OHDA; no such enhance-

ment was seen in adults (Figure 1C). To exclude the possibility

that neurodegeneration might be caused by increased net 6-

OHDA uptake at the organismal level, we took advantage of the

partial growth retardation conferred by 6-OHDA treatment. By

scoring for progression to ensuing developmental stages, we found

the growth of wild-type and gt1681 worms to be similarly retarded

upon toxin treatment, suggesting that gt1681 specifically affects

dopaminergic neurons (Figure 1D).

The gt1681 mutant is recessive in hermaphrodites (Figure 2A).

Genetic linkage was established by single nucleotide polymor-

phism (SNP) mapping, which placed gt1681 on the left arm of the

X chromosome. Using unc-20 and lon-2 genetic markers to

perform three-factor mapping, the locus was further refined to

,10 map units. A cross between an unc-20 gt1681 lon-2 triple

mutant and the CB4856 ‘‘Hawaii’’ mapping strain enabled us to

assess the position of single recombination events relative to

gt1681. This analysis localized gt1681 to an interval between

nucleotides 3,659,480 and 3,737,466 on the physical map. In

parallel, next generation sequencing revealed a single exonic

mutation within this interval, leading to a guanine to adenine

substitution in the C02F12.1 open reading frame and resulting in a

glycine to glutamic acid change at position 109 of the encoded

protein (Figure 2B). C02F12.1 encodes a tetraspanin family,

integral membrane protein called TSP-17 (see below). Rescue of

the phenotype by a fosmid (WRM0626aC02) encompassing tsp-17
and by a tsp-17-encoding transgene (Figure 2C) provides further

evidence that gt1681 confers 6-OHDA hypersensitivity. Hyper-

sensitivity is also conferred by the vc2026 allele, a substitution

obtained via the Million Mutation Project [38] that results in a

glycine to arginine change at position 109 (Figure 2B, 2D). Finally,

two deletion alleles, generously provided by the Japanese

Knockout Consortium, affecting the first exons of tsp-17 also

confer hypersensitivity to 6-OHDA-mediated neurotoxicity (Fig-

ure 2B, 2D) as does the trans-heterozygous gt1681/tm4995
mutant combination (Figure 2A).

Tetraspanins constitute a large protein family, with 30 and 21

members encoded in the human and C. elegans genomes,

respectively [39–41]. Most tetraspanins have not been functionally

characterized. In vertebrates, tetraspanins are suggested to be

involved in cell–cell fusion, cell adhesion, cell motility and tumor

metastasis [42]. In C. elegans, TSP-12 is involved in modulating

Notch signaling, and specific hypodermal TSP-15 expression is

required to mediate covalent tyrosine–tyrosine cross-linking during

cuticle formation [43,44]. C. elegans tsp-17 is predicted to encode

two isoforms. The large isoform, C02F12.1b, encodes a 312 amino

acid protein containing four TM domains. The short isoform,

C02F12.1a, encodes a 243 amino acid protein that, unlike typical

Figure 1. gt1681 mutants are hypersensitive to 6-OHDA. A. The extent of dopaminergic degeneration is indicated for wild-type and gt1681
mutant worms after intoxication with 10 mM 6-OHDA. Neurodegeneration of L1 worms was scored after 24, 48 and 72 h as described in Materials
and Methods, and categorized as ‘‘complete loss,’’ ‘‘partial loss’’ or ‘‘no loss’’ phenotypes (labeled black, white and gray, respectively). Asterisks
represent statistical significance of differences from wild-type (****p,0.00001). B. Representative images showing progressive stages of
dopaminergic neurodegeneration. Absence of degeneration in wild-type (upper left panel) and complete degeneration in gt1681 mutant worms 72 h
post 6-OHDA intoxication (upper right panel, complete degeneration); lower panel and inset are examples of partial degeneration in gt1881. Arrows
indicate ‘blebs in degenerating neurons. C. Extent of neurodegeneration at various developmental stages in wild-type and gt1681 mutant worms
72 h post 6-OHDA intoxication. D. In wild-type and gt1681 worms, development is equally retarded following treatment with 6-OHDA. Progression to
various developmental stages was scored once 95% of untreated worms reached adulthood.
doi:10.1371/journal.pgen.1004767.g001
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tetraspanins, contains only three transmembrane domains and

does not have an intracellular N-terminus. The amino acid change

at position 109 in gt1681 affects a highly conserved residue in the

third transmembrane domain of the long isoform (Figure 2B, 2E).

We confirmed expression of mRNAs encoding for both isoforms,

and verified the predicted intron–exon structure (Figure 2B).

Using BLAST protein analysis of C. elegans TSP-17, we found the

most likely human orthologs of TSP-17 to be CD63, Tspan5 and

CD82 (Figure 2E). A previous phylogenetic analysis placed TSP-

17 within the human CD82 subfamily [45]. However, our

attempts to firmly establish an orthologous relationship between

TSP-17 and a single human tetraspanin or a distinct subfamily of

human tetraspanins were unsuccessful. Our phylogenetic analysis

included all tetraspanins from several nematodes, arthropods,

cnidarians and chordates (Figure S2). We speculate that the rapid

evolution of this protein family, as often occurs with membrane

Figure 2. The TSP-17 tetraspanin family member protects dopaminergic neurons from 6-OHDA. A. Extent of neurodegeneration in
heterozygous and trans-heterozygous worms 72 h post 6-OHDA intoxication. B. Schematic gene model of the two isoforms of tsp-17. Alleles used in
this study are indicated. C. Complementation of tsp-17 expressed under its own promoter (3rd column strain TG2439) and under the dat-1 promoter
(4th column, strain TG2440). Data presented is from scoring the extent of neurodegeneration 72 h post 6-OHDA intoxication. Asterisks represent
statistical significance of differences between tsp-17 and the rescuing lines (****p,0.0001). D. 6-OHDA hypersensitivity conferred by various tsp-17
alleles. E. Alignment of nematode TSP-17 to the most closely related human tetraspanins. Blue bars indicate transmembrane domains and brown bars
designate extracellular loops (EC1 and EC2). The arrow indicates amino acid G109, which is mutated in the C. elegans gt1681 and vc2026 mutants. The
red box indicates the CCG motif in the EC2, which is highly conserved throughout the tetraspanin protein family. Hs, Homo sapiens; Ce,
Caenorhabditis elegans; Cbn, C. brenneri; Cre, C. remanei; Cbr, C. briggsae.
doi:10.1371/journal.pgen.1004767.g002
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proteins, compromised our ability to firmly identify a human

ortholog of C. elegans TSP-17.

To assess the TSP-17 expression pattern, we used biolistic

bombardment to generate transgenic worms (TG2439) express-

ing a tsp-17::GFP gene fusion (NM001) under the control of its

own promoter and 39UTR. A dat-1 (promoter)::mCherry fusion

(PBI001) was co-bombarded to mark dopaminergic neurons.

The tsp-17::GFP gene fusion largely suppressed the hypersen-

sitivity phenotype conferred by tsp-17, thus confirming its

functionality (Figure 2C, bar 3). Importantly, fusion protein

expression was observed in all dopaminergic neurons: it was

uniform along axons and dendrites of both dorsal and ventral

pairs of CEP neurons, as well as in ADE neurons (Figure 3A–I,

arrows indicate axons and dendrites) and in the posterior PDE

neurons. Within the cell body, the TSP-17::GFP fusion seems to

be excluded from the nucleus, a pattern that is more evident in a

‘‘close-up’’ image of a PDE neuron, where the signal appears to

form a ring-like structure around the nucleus (Figure 3J–L

arrowheads). mCherry aggregates (which are not linked to

neurodegeneration) form dot-like structures in dendrites and

axons (arrows), and the surrounding TSP-17 fluorescent signal

suggests plasma membrane expression (arrow, Figure 3K). TSP-

17 enrichment at the plasma membrane can be observed most

prominently in the large cells of the vulva and the sheath cells

enclosing the spermatheca (Figure 3M, N). In the spermatheca,

TSP-17::GFP expression is also clearly enriched around the

nucleus (Figure 3N, arrowheads), possibly localizing to the

nuclear membrane or endoplasmic reticulum (Figure 3N,

arrowhead). Analysis of subcellular localization in the vulva

and spermatheca revealed that the TSP-17::GFP (gt1681)
mutant protein is uniformly expressed in the cytoplasm, with a

loss of enrichment at the plasma membrane and around the

nucleus (Figure S3A). Thus, the gt1681 mutation, which leads

to an amino acid change in the fourth transmembrane domain,

might compromise the membrane localization of TSP-17 and

therefore block its function. TSP-17::GFP is also expressed in

multiple neurons throughout worm development. For instance,

the NSM serotonergic neuron, which is characterized by

extensive axon sprouting, shows TSP-17::GFP expression along

its entire length (Figure 3O). Prominent expression was also

observed in the muscles of early stage larvae (Figure 3P). Finally

expression also appears to be apparent in muscles of the adult

head (Figure 3B, C, H, I). In summary, the TSP-17::GFP

expression indicates that TSP-17 is expressed in dopaminergic

neurons. Transgene expression in dopaminergic neurons was

also confirmed by analyzing a TSP-17::GFP expressing trans-

genic strain crossed to a DAT-1 reporter strain (Figure S3B). We

cannot rule out expression of TSP-17 not uncovered by the

transgene, due to missing regulatory sequences. We next wanted

to investigate whether TSP-17 expression in dopaminergic

neurons protects them from 6-OHDA-mediated neurodegener-

ation. By direct injection of transgenes into the gonad, we

generated transgenic worms overexpressing TSP-17 under the

control of the dat-1 promoter. Consistent with TSP-17

expression in dopaminergic neurons, we found partial rescue

of the hypersensitivity conferred by gt1681 (Figure 2C, com-

pare bars 1, 2 and 4). Interestingly, overexpression of TSP-17

and TSP-17 (gt1681) under the dat-1 promoter led to

spontaneous neurodegeneration (Figure S4A, B, respectively).

This phenotype tended to be more severe following TSP-17

(gt1681) overexpression. Taken together, these data indicate

that TSP-17 indeed functions in dopaminergic neurons, and

that excessive TSP-17, especially the mutant form, leads to

spontaneous neurodegeneration.

We next wished to address how TSP-17 protects dopaminergic

neurons. We hypothesized that TSP-17 might affect dopamine

synthesis, or dopamine and 6-OHDA uptake or degradation.

Dopamine metabolism is itself a source of oxidative stress and may

initiate ROS-mediated injury to dopaminergic neurons. The link

between excessive dopamine exposure and toxicity is controversial,

but overexpression of CAT-2, the rate-limiting enzyme in

dopamine synthesis in C. elegans, is reported to lead to age-

dependent degeneration of dopaminergic neurons [46]. We

repeated these experiments, and indeed found that neurodegen-

eration conferred by CAT-2 overexpression in dopaminergic

neurons is enhanced in the gt1681 mutant background (Fig-

ure 4A). In contrast, we found CAT-2 overexpression to confer a

strong resistance toward 6-OHDA-dependent neurodegeneration

in both wild-type and gt1618 backgrounds (Figure 4B). We

consider it likely that 6-OHDA resistance conferred by CAT-2

overexpression can be explained by reduced 6-OHDA uptake into

dopaminergic neurons in the presence of excessive levels of

intracellular dopamine. Our results indicate that tsp-17 protects

against 6-OHDA toxicity and toxicity caused by excessive

dopamine.

Since these genetic interactions suggest that dopamine levels

could be altered in tsp-17 mutants, we next investigated behavioral

phenotypes associated with dopamine. Dopamine synthesis and

release are required for the basal slowing response, in which

worms reduce their speed when encountering a bacterial lawn

[36]. We did not observe a defect in this response, indicating that

both dopamine synthesis and extracellular dopamine sensing by

receptors are intact in tsp-17 mutants (Figure S5A). One of the

most accessible phenotypes thought to be associated with excessive

extracellular dopamine is the SWIP (Swimming Induced Paralysis)

phenotype [37]. While wild-type worms placed into a drop of

water maintain their thrashing frequency dat-1 mutants become

progressively paralyzed. The SWIP phenotype is ascribed to

excessive extracellular dopamine as a consequence of the reuptake

defect in the dat-1 mutant. Excessive extracellular dopamine

triggers paralysis by hyperactivating the DOP-3 receptor ex-

pressed on cholinergic neurons and hence blocking acetylcholine

release [33]. To perform this experiment, we placed L4 worms

into drops of water and scored their ability to swim over a period

of 30 minutes. As expected, we found that wild-type but not dat-1
mutant worms can swim for 30 minutes with no change in the

speed or pattern of swimming. All four tsp-17 mutants showed a

partial SWIP phenotype (Figure 5A). This phenotype is probably

caused by dopaminergic signaling because it can be rescued by

deletion of the dop-3 dopamine receptor and by deletion of the

cat-2 tyrosine hydroxylase (Figure 5A and Figure 5B). It was

surprising to find a SWIP phenotype in tsp-17 mutants as we

argue that tsp-17 inhibits dat-1 function (see below). While

elucidating the exact mechanism of how TSP-17 affects behavioral

phenotypes will require further investigation we speculate that

hyper-activation of DAT-1 in tsp-17 strains could trigger a

feedback loop that transiently enhance extracellular dopamine

levels inducing the weak SWIP phenotype we observe.

We also tested for a SWIP phenotype in L1 stage worms, and

found that all tsp-17 mutants tested, except the gt1681 allele,

behaved similarly to dat-1 mutants (Figure 5C, D). This pheno-

type, however, is not suppressed by a dop-3 mutation or blocked

by a cat-2 mutation (Figure 5D and Figure S5B). We discovered

that the ‘‘L1 SWIP phenotype’’ is linked to lethality because

worms placed onto agar plates after SWIP assay show reduced

viability (Figure S5C, D). Thus, the L1 ‘‘swimming-induced

lethality’’ phenotype is unlikely to be related to dopamine levels.

Given that TSP-17 is expressed in body wall muscles in L1 larvae,

Neuroprotection by the TSP-17 Tetraspanin in C. elegans

PLOS Genetics | www.plosgenetics.org 5 December 2014 | Volume 10 | Issue 12 | e1004767



we speculate that swimming-induced lethality might be caused by

a muscle defect.

To systematically test whether TSP-17 protects dopaminergic

neurons by modulating dopamine metabolism, catabolism, reup-

take or signaling, we performed a genetic epistasis analysis. As

expected, tsp-17 dat-1 double mutants were completely resistant to

6-OHDA-induced neurodegeneration, consistent with the notion

that TSP-17 does not bypass 6-OHDA uptake by the DAT-1

dopamine transporter (Figure 6A). We observed no alterations in

6-OHDA sensitivity in cat-2 (tyrosine hydroxylase), bas-1
(aromatic amino acid decarboxylase/AAADC) and cat-1 (VMAT

ortholog required for dopamine packaging) tsp-17 double mutants,

indicating that TSP-17 is unlikely to affect levels of dopamine

synthesis or packaging (Figure S6).

As 6-OHDA can enter dopaminergic neurons through the

DAT-1 transporter owing to its structural similarity to dopamine

[3,47], we wondered whether DAT-1 localization or activity is

modified in a tsp-17 mutant background. Having established that

6-OHDA hypersensitivity in tsp-17 worms depends on the DAT-1

transporter (Figure 6A), we tested the hypothesis that enhanced

DAT-1 transporter activity may contribute to enhanced 6-

OHDA-mediated neurotoxicity. Using a functional pdat-1::dat-
1::YFP translational fusion, we found that overexpression of this

transgene generated by bombardment does not confer overt 6-

OHDA hypersensitivity (Figure 6A, Figure S7). Furthermore, the

localization of DAT-1::YFP was similar between wild-type and tsp-
17 mutants worms (Figure S8A), a notion further confirmed by

Structural Illumination ‘super resolution’ images of CEP dendrites

(Figure S8B). Additionally, photobleaching experiments indicated

that ,half of DAT-1::YFP is in the mobile fraction and that the

t1/2 is around 30 seconds in both wild-type and tsp-17(gt1681)
worms (Figure S8C–E). We thus aimed to test whether TSP-17

Figure 3. TSP-17::GFP expression. Analysis of the TG2439 strain containing dopaminergic neurons labeled by mCherry and tsp-17 C-terminally
fused to GFP and driven by its own promoter. A, D, G, J. Dopaminergic neurons expressing the mCherry marker. Neurons are indicated. White arrows
highlight dendrites and axons. B, E. H, K. Expression of TSP-17::GFP. C, F, I, L. Merged images. White arrows highlight dendrites and axons. K, L, N.
The arrow-heads indicate TSP-17::GFP signal enrichment around the nucleus. Expression in the vulva (M), the spermatheca (N), a NSM neuron (O),
and in body wall muscle cells (P).
doi:10.1371/journal.pgen.1004767.g003

Neuroprotection by the TSP-17 Tetraspanin in C. elegans

PLOS Genetics | www.plosgenetics.org 6 December 2014 | Volume 10 | Issue 12 | e1004767



negatively regulates DAT-1 activity using a pharmacological

approach. We confirmed previous reports that imipramine

specifically inhibits the DAT-1 transporter in the worm [3]

(Figure 6B, left panels, wild-type 0.25 mM and 1 mM). We

reasoned that if DAT-1 is hyperactive in tsp-17 (gt1681),

relatively more imipramine should be needed to inhibit DAT-1

activity and prevent neurodegeneration. We thus treated wild-

type, tsp-17 (gt1681) worms and wild-type worms overexpress-

ing DAT-1::YFP with 10 mM 6-OHDA and increasing doses of

imipramine (Figure 6B, middle and right panels). We indeed

found that higher levels of imipramine are needed to reduce

neurodegeneration in DAT-1::YFP overexpressing worms and

in tsp-17 (gt1681) worms, and that the effect being stronger in

the tsp-17 (gt1681) mutant. Reduced levels of neurodegener-

ation levels were most clearly observed when concentrations of

0.125 mM and 0.25 mM imipramine were used (Figure 6B).

This result provides evidence that DAT-1 activity may be higher

in the tsp-17 mutant background. We aimed to provide further

Figure 4. tsp-17 (gt1681) enhances the neurodegeneration phenotype of cat-2-overexpressing lines, and cat-2 overexpression
protects against 6-OHDA toxicity. A. cat-2 induced neurodegeneration. Analysis of cat-2-overexpressing stains UA57 baIn4 [pdat-1::gfp pdat-
1::cat-2] and TG2402 baIn4[pdat-1::gfp pdat-1::cat-2]; tsp-17(gt1681). Error bars represent standard deviation. Asterisks represent statistical difference
between cat-2::gfp adults on days 5 and 7 (**p,0.005). B. cat-2 overexpression suppresses 6-OHDA-induced neurotoxicity. Experiments were done in
triplicate and the average is shown. Data presented is from scoring the extent of neurodegeneration 72 h post 6-OHDA intoxication.
doi:10.1371/journal.pgen.1004767.g004
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support for this hypothesis by directly measuring dopamine

uptake, following previously described procedures. We macer-

ated C. elegans embryos to establish primary embryonic cell

cultures, and used these for dopamine uptake assays [48,49].

Using two concentrations of tritiated dopamine, we indeed

found increased dopamine uptake in tsp-17 mutants (Figure 6C,

D). We note that we found this in 7/8 repeat experiments.

However, we also note that only a very small proportion of

tissue culture cells are dopaminergic neurons and that the

absolute amount of dopamine uptake is low especially in the

wild-type background.

Our combined genetic, pharmacological and biochemical

analysis suggests that TSP-17 modulates DAT-1 activity. Previous

studies using tissue culture-based assays demonstrated that

dopamine receptor activation might promote DAT-1 activity

[25,50,51]. Consistent with these results, we found dop-2 and dop-
3 mutant worms to be partially resistant to high doses of 6-OHDA

compared to wild-type (Figure 7A). We therefore investigated

whether tsp-17 genetically interacts with dopamine receptors to

modify DAT-1 activity and confer differential 6-OHDA sensitiv-

ity. This was done by assessing the sensitivity of tsp-17 mutants in

the absence of the C. elegans DOP-1 D1-like receptor and/or in

the absence of the DOP-2 and/or DOP-3 D2-like receptors. C.
elegans DOP-1 is expressed in a variety of cells, including

cholinergic neurons, mechanosensory neurons, head muscles and

neuronal support cells. DOP-3 is expressed postsynaptically and its

antagonism of DOP-1 in cholinergic neurons is required for the

regulation of locomotion [33]. The DOP-2 receptor is expressed

both postsynaptically and presynaptically. When expressed pre-

synaptically, it acts as an autoreceptor on the plasma membrane of

dopaminergic neurons. We found that dop-1; tsp-17 (gt1681) was

as sensitive to 6-OHDA as the respective tsp-17 single mutant. In

contrast, 6-OHDA hypersensitivity was reduced in dop-2; tsp-17
(gt1681) and dop-2; tsp-17 (tm4994) and in dop-3; tsp-17
(gt1681) and dop-3; tsp-17 (tm4994) double mutant worms

(Figure 7B, C and Figure S9) Our genetic data thus argue that

TSP-17 might inhibit DOP-2 and DOP-3 function, which in turn

might be required for full DAT-1 transporter activity (Figure 7A,

E). Given that deletion of dop-2 and dop-3 only partially rescues 6-

OHDA hypersensitivity in tsp-17 mutants, we speculate that TSP-

17 also inhibits DAT-1 activity independently of DOP-2 and

DOP-3.

Figure 5. Behavioral phenotypes associated with tsp-17 mutants. A. Quantitative analysis of SWIP behavior at L4-stage, over 30 minutes. B.
The SWIP phenotype of tsp-17(tm4995) in L4-stage worms is rescued by dop-3 deletion. C. Quantitative analysis of SWIP behavior in L1-stage worms
over 20 min. D. The SWIP phenotype of tsp-17(tm4995) at L1 stage is not rescued by dop-3 deletion. Assays were done in triplicate for the total
number of worms indicated by N values. Error bars represent the standard error of the mean. Asterisks represent statistically significant differences
from the wild-type (***p,0.01). To facilitate comparison, strains are indicated by the same color code.
doi:10.1371/journal.pgen.1004767.g005
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We next aimed to investigate how TSP-17 might regulate

DAT-1 or D2-like receptors to modulate DAT-1 activity. Given

that these are integral membrane proteins, we employed the split-

ubiquitin membrane-based yeast two-hybrid system [52]. In this

system, a C-terminal ubiquitin moiety fused to a transmembrane

protein and a transcription factor is used a bait. An N-terminal

ubiquitin moiety is used as the ‘‘prey.’’ Upon ‘‘reconstruction’’ of

the split ubiquitin, this molecule is recognized by a protease,

which cleaves the transcription factor, thus promoting reporter

gene activation. By employing various bait and prey fusions with

TSP-17, DAT-1 and DOP-2, we could not find a direct

interaction between TSP-17 and DAT-1 using the split-ubiquitin

system (Figure 7D). In contrast, we found that DOP-2 and TSP-

17 may indeed interact. The specificity of this interaction was

clearly revealed when the beta-galactosidase reporter assay was

used as an output. In addition, yeast colony formation on his-3 or

his-3 ade-2 plates was enhanced when the corresponding

reporters where used (Figure 7D). Thus, TSP-17 might modulate

DOP-2 activity by a direct physical interaction, consistent with

TSP-17 affecting ligand binding, downstream signaling or

membrane trafficking of DOP-2-like receptors. Our genetic data

also suggest that TSP-17 might also act via other factors to

dampen DAT-1 activity (Figure 7B).

Discussion

Using C. elegans as a model and employing unbiased genetic

approaches, we aimed to find neuroprotective genes that alleviate

the 6-OHDA-induced degeneration of dopaminergic neurons.

Based on our genetic data, which is supported by the character-

ization of several alleles and transgenic rescue experiments, we

provide compelling evidence that TSP-17 protects dopaminergic

neurons from 6-OHDA-mediated toxicity. TSP-17 appears to

function in dopaminergic neurons, and our combined genetic,

pharmacological and biochemical evidence suggests that it might

act by antagonizing DAT-1 dopamine transporter activity. We do

not know how TSP-17 regulates DAT-1 at a mechanistic level.

TSP-17 is a member of the evolutionarily conserved family of

tetraspanins, comprising 20–50 kDa membrane proteins that

contain four transmembrane domains. A characteristic feature of

tetraspanins is their ability to form lateral associations with each

other and with other proteins. Such interactions are thought to

Figure 6. Evidence for DAT-1 hyperactivation in tsp-17 worms. A. dat-1::yfp transgenic worms (TG2470) do not exhibit hypersensitivity to
10 mM 6-OHDA. The extent of neurodegeneration was scored 72 h post 6-OHDA intoxication. Asterisks represent statistically significant differences
compared to tsp-17 worms (****p,0.00001) B. More imipramine than in wild-type worms is needed to prevent neurodegeneration in tsp-17 mutants
and in dat-1::yfp overexpression worms co-treated with 50 mM 6-OHDA. Data presented is from scoring the extent of neurodegeneration 72 h post 6-
OHDA intoxication. The imipramine concentration is indicated on the x axis. N, total number of worms from each strain examined for every treatment.
Error bars represent the standard error of the mean. Asterisks (below top bar) represent statistically significant differences compared to wild-type;
worms treated with 0.125 mM imipramine are compared (****p,0.00001). Lower bars indicate difference within individual strains (no imipramine
compared to 0.125 mM imipramine; *p,0.05, *p,0.005, ****p,0.00001) C., D. [3H]-dopamine (DA) uptake in wild-type and tsp-17 worms. Uptake
assays were performed using 50 nM (C) and 250 nM [3H]-DA (D).
doi:10.1371/journal.pgen.1004767.g006
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lead to a dynamic assembly, resulting in the formation of a

network of molecular interactions referred to as the tetraspanin

web [41,53]. Tetraspanins are thought to have regulatory

functions in the ligand binding, downstream signaling, protein

trafficking and proteolytic activities of associated proteins [42,54].

In C. elegans, only two tetraspanins have known functions. TSP-

15 appears to be required to activate the BLI-3 dual oxidase to

regulate H202 production at the plasma membrane and thus alter

dityrosine cross-linkage of extracellular matrix proteins [44,55].

Genetic evidence suggests that TSP-12, most closely related to

human TSPAN33, appears to facilitate Notch signaling redun-

dantly with TSP-14. Thus conserved tetraspanins likely function

by facilitating c-secretase cleavage of the membrane-bound form

of Notch, thus promoting nuclear localization of this transcription

factor [43].

DAT-1 hyperactivity in the tsp-17 mutants could result from

altered DAT-1 localization or abundance at the cell membrane;

alternatively, TSP-17 might indirectly regulate DAT-1 activity.

Using a functional DAT-1::YFP construct, we did not see any

obvious change in DAT-1 expression, localization, or change in

half life in tsp-17 mutants and we thus favor the idea that TSP-17

regulates DAT-1 activity. Our finding that TSP-17 genetically and

biochemically interacts with the DOP-2 D2-like dopamine

receptor, suggests an indirect mode of DAT-1 regulation by

TSP-17 (Figure 7E). Our genetic analysis provides evidence that

TSP-17 might in part regulate DAT-1 via DOP-2 and DOP-3

dopamine receptors (Figure 7E). We found that depletion of the

D2-like dopamine receptors, DOP-2 and/or DOP-3, in tsp-17
mutants leads to a moderate reduction in the 6-OHDA

hypersensitivity conferred by tsp-17, while D2-like dopamine

receptor single knockout strains show the same 6-OHDA

sensitivity as wild-type worms. Thus, our analysis suggests that

tsp-17 genetically interacts with D2-like dopamine receptors, in

line with our observation that TSP-17 directly binds to DOP-2. In

mammalian systems, dopamine autoreceptors are reported to have

a major role in providing inhibitory feedback to adjust the rate of

Figure 7. Dopamine receptors act antagonistically to modulate the sensitivity of tsp-17 (gt1681) mutants to 6-OHDA. Worms of the
indicated genotypes were intoxicated with A. 50 mM, B. 10 mM 6-OHDA and C. 5 mM 6-OHDA and scored for neurodegeneration 72 h post
intoxication. Experiments were done in triplicate and the average data is presented. N, total number of animals examined for each strain. Error bars
represent the standard error of the mean. Asterisks represent statistically significant differences (***p,0.0001, ****p,0.00001). D. Evidence for a
direct interaction between DOP-2 and TSP-17. Growth on -Leu, -Trp, -His (left panel) and -Leu, -Trp, -His, -Ade (middle panel) plates is shown. The right
panel depicts a b-galactosidase assay. E. Working model as to how TSP-17 might interact with DAT-1 and DOP-2 to modulate level of DAT-1 activity.
Arrows indicate activation. T-bars indicate repression. The question mark indicates that we do not know the mechanism of DAT-1 inhibition by TSP-
17.
doi:10.1371/journal.pgen.1004767.g007
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neuronal firing, dopamine synthesis and dopamine release in

response to the dopamine level in the synaptic cleft [30,32].

Several studies suggest that vertebrate D2 dopamine receptors also

modulate DAT-1 activity to regulate the dopamine level in the

synaptic cleft. Cass and Gerhardt used pharmacological approach-

es to demonstrate that inhibition of D2 class dopamine receptors

significantly inhibits DAT function [50]. Two independent studies

provided evidence that D2 receptors regulate both the activity and

cell surface expression of DAT-1 [25,51]. Nevertheless, further

investigations are required to establish functional links between C.
elegans DOP-2 receptors and DAT-1 activity. The ability of TSP-

17 to inhibit DAT-1 both via DOP-2 and independent of D2-like

receptors (Figure 7E) suggests that TSP-17 modulates the activity

of multiple signaling proteins. Indeed, our observation of excessive

neurodegeneration following wild-type, and especially mutant,

TSP-17 overexpression in dopaminergic neurons hints that

malfunctioning and/or excessive TSP-17 blocks pathways needed

to maintain the integrity of dopaminergic neurons. The enhanced

defect associated with overexpression of mutant TSP-17 that fails

to show the correct cytoplasmic localization hints the neurotoxicity

might be conferred by the sequestration of TSP-17 interacting

proteins essential for neuronal survival.

Dopamine neuronal dysfunction has been associated with

several common neurobehavioral disorders, including drug

addiction, schizophrenia and attention-deficit hyperactivity disor-

der [32,56–58]. The DAT-1 dopamine transporter plays a central

role in dopamine signaling, and it is likely to be subjected to

complex modes of regulation. DAT-1 is the target of psychoactive

addictive drugs such as cocaine and amphetamine, and DAT1

overexpression leads to increased amphetamine sensitivity [59–

63]. Mechanisms related to dopamine signaling tend to be

evolutionarily conserved. Thus, studies aimed to genetically define

modulators of dopamine signaling and 6-OHDA-mediated toxicity

will provide important insights into the mechanisms of dopamine

signaling in health and disease.

Idiopathic PD is thought to be triggered by a combination of

environmental factors and genetic susceptibility, and a case has

been made that exposure to environmental toxins such as the

pesticides paraquat and rotenone leads to increased PD [9].

Indeed, chemical and tissue culture studies have provided evidence

that increased dopamine levels may lead to enhanced neurode-

generation, probably through the generation of toxic intermediates

such as the neurotoxic product of dopamine oxidation, 6-OHDA

[13,15,64–68]. The specificity of 6-OHDA entry into dopamine

neurons depends on DAT, and DAT antagonists can block uptake

[3,4,11,47]. Interestingly, DAT-1 hyperactivity in tsp-17 mutants

further enhances the neurodegeneration conferred by elevated

dopamine synthesis in CAT2 tyrosine hydroxylase-overexpressing

worm strains. Thus, DAT-1 hyperactivity might enhance neuro-

degeneration by further increasing the intracellular concentration

of dopamine and/or toxic metabolites. DAT1 expression or

activity has not been linked to PD, but it is intriguing that among

dopamine neurons those residing in the substantia nigra express

the highest DAT levels in vivo and are most strongly affected in

PD [4,60].

Materials and Methods

C. elegans strains and maintenance
Strains were grown at 20uC under standard conditions, unless

indicated otherwise. N2 Bristol was used as the wild-type strain.

The tsp-17(tm4994) and tsp-17(tm5169) mutants were generated

and kindly provided by Shohei Mitani of the National Bioresource

Project for the Nematode (http://www.shigen.nig.ac.jp/c.

elegans/). Details of the respective alleles are described by the

National Bioresource Project for the Nematode and by WormBase

(www.wormbase.org). All mutants were outcrossed a minimum of

four times to the TG2435 vtIs1[pdat-1::gfp] strain originally

generated by the Blakely laboratory (BY200) and repeatedly

crossed into the N2 background.

Strains
TG2435 vtIs1[pdat-1::gfp; rol-6] V,

TG1681 vtIs1 V; tsp-17(gt1681) X,

TG2436 vtIs1 V; tsp-17(tm4994) X,

TG2437 vtIs1 V; tsp-17(tm5169) X,

TG2438 vtIs1 V; tsp-17(gk276386) X,

TG2462 vtIs1 V; CB4856,

TG2463 vtIs1 V; lon-2(e678) unc-20(e112) X,
TG2464 vtIs1 V; tsp-17(gt1681) unc-20(e112) X,
TG2465 vtIs1 V; tsp-17(gt1681) lon-2(e678) X,
TG2395 cat-2(e1112) II; vtIs1 V,

TG2394 cat-2(e1112) II; vtIs1 V; tsp-17(gt1681) X,

TG2396 bas-1(tm351) III; vtIs1 V,

TG2397 bas-1(tm351) III; vtIs1 V; tsp-17(gt1681) X,

TG2399 vtIs1 V; cat-1(e1111) X,

TG2398 vtIs1 V; cat-1(e1111) tsp-17(gt1681) X,

TG2400 dat-1(ok157) III; vtIs1 V,

TG2401 dat-1(ok157) III; vtIs1 V; tsp-17(gt1681) X,

TG2404 amx-1(ok659) III; vtIs1 V,

TG2403 amx-1(ok659) III; vtIs1 V; tsp-17(gt1681) X,

TG2406 amx-2(ok1235) I; vtIs1 V,

TG2405 amx-2(ok1235) I; vtIs1 V; tsp-17(gt1681) X,

TG2408 amx-2(ok1235) I; amx-1(ok659) III; vtIs1 V,

TG2407amx-2(ok1235) I; amx-1(ok659) III; vtIs1 V; tsp-
17(gt1681) X,

TG2410 vtIs1 V; dop-1(vs100) X,

TG2409 vtIs1 V; dop-1(vs100) tsp-17(gt1681) X,

TG2412 vtIs1 dop-2(vs105) V,

TG2411 vtIs1 dop-2(vs105) V; tsp-17(gt1681) X,

TG2414 vtIs1 V; dop-3(vs106) X,

TG2413 vtIs1 V; dop-3(vs106) tsp-17(gt1681) X,

TG2466 vtIs1 dop-2(vs105) V; dop-3(vs106) X,

TG2467 vtIs1 dop-2(vs105) V; dop-3(vs106) tsp-17(gt1681) X,

TG2415 vtIs1 dop-2(vs105) V; dop-1(vs100) dop-3(vs106) X,

TG2416 vtIs1 dop-2(vs105) V; dop-1(vs100) dop-3(vs106)
tsp-17(gt1681) X,

UA57 baIn4[pdat-1::gfp pdat-1::cat-2],
TG2402 baIn4[pdat-1::gfp pdat-1::cat-2],; tsp-17 (gt1681) X,

TG2470 gtIn2469[pdat-1::dat-1::yfp::let-858 39UTR, unc-
119(+)]; gtIn2468[pdat-1::mcherry::let858 39UTR, unc-
119(+)]; unc-119(ed3) III,

TG2471 gtIn2469[pdat-1::dat-1::yfp::let-858 39UTR, unc-
119(+)]; gtIn2468[pdat-1::mcherry::let858 39UTR, unc-
119(+)]; unc-119(ed3) III; tsp-17(gt1681) X,

TG2439 gtIn2439[ptsp-17::tsp-17::gfp::tsp-17 39UTR, pdat-
1::mcherry::let858 39UTR, unc-119(+)]; unc-119(ed3) III,

TG2472 tsp-17(gt1681) X; gtIn2439[ptsp-17::tsp-17::gfp::tsp-
17 39UTR, pdat-1::mcherry::let858 39UTR, unc-119(+)]; unc-
119(ed3) III,

TG2440 gtEx2440[pdat-1::tsp-17::cfp:: let-858 39UTR, unc-
119(+)]; unc-119(ed3) III; vtIs1 [pdat-1::gfp; rol-6] V,

TG2473 vtIs1 [pdat-1::gfp; rol-6] V; tsp-17(gt1681) X;

gtEx2440 [pdat-1::tsp-17::cfp:: let-858 39 UTR, unc-119(+)],
TG2474 vtIs1 [pdat-1::gfp; rol-6] V; unc-119(ed3) III;

gtEx2474[pdat-1::tsp-17(G74E)::cfp:: let-858 39UTR, unc-
119(+)],
TG2478 cat-2(e1112) II; vtIs1V; tsp-17(tm4994) X,
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TG2475 dat-1(ok157) III; vtIs1V; tsp-17(tm4995) X,

TG2477 vtIs1; dop-3(vs106) tsp-17(tm4995) X,

TG2476 dat-1(ok157) III; vtIs1V; dop-3(vs106) X,
Generation of transgenic worms and constructs. NM001,

NM002, Pb1001, PbI002, PbI003 and AH001 plasmid sequences

can be obtained upon request.

Plasmids generated in this study are as follows:

NM001 pRH21-ptsp-17::tsp-17::gfp::tsp-17 39UTR

NM002 pRH21-ptsp-17::tsp-17(gt1681)::gfp::tsp-17 39UTR

PbI001 pRH21-pdat-1::mcherry::let858 39UTR

PbI002 pRH21-pdat-1::tsp-17::cfp::tsp-17 39UTR

PbI003 pRH21-dat-1::tsp-17(gt1681)::cfp::tsp-17 39UTR

AH001 pRH21-pdat-1::dat-1::yfp::let-858 39UTR

NM003 pBT3-STE-dop-2c-Cub

NM004 pBT3-STE-dat-1-Cub

NM005 pPR3-STE-tsp-171b-NubG

Plasmids were generated using the following primers:

dat-1_pmt_AscI_F, atatGGCGCGCCaatgtttctagtcgtttttgta

dat-1_pmt_SgfI_R, ctccGCGATCGCggctaaaaattgttgagattcg

mCherry_NotI_F, ggagGCGGCCGCatggtctcaaagggtgaagaag

mCherry_FseI_R, cctaGGCCGGCCccttatacaattcatccatgccacc

F_pmt-tsp-17_AscI, agtcGGCGCGCCagtctgaaaaacaacagagt-

tagatg

F_ATG_SgfI_tsp-17a_Cter, ggagGCGATCGCatgcttctcgaccc-

gaaac

R_tsp-17gnc_NO-TAA_cNotI, atgcGCGGCCGCcgtagt-

catctcgaattacatgg

F_PacI_TAA-3utr_tsp17, gtacTTAATTAAtaaatcactctacggt-

gaatta

R_ApaI_3utr_tsp-17, cagtGGGCCCtcactaatatatgttctcagtcc

GFP-CFP_NotI_F, GCGGCCGCatgagtaaaggagaagaacttttc

GFP_FseI_R, GGCCGGCCccttgtatggccggctagcg

F_dop-2c_pBT3STE, gctaGGCCATTACGGCCgaggccggaga-

gacatggaat

R_dop2c_pBT3STE, gctaGGCCGAGGCGGCCccgacatgcg-

cctgcttgttact

F_dat-1_pBT3STE, gctaGGCCATTACGGCCCAGTTGG-

TGCCTACAGACGAT

R_dat-1_pBT3STE, CCGCACTCTGACATAATGCTAgg-

GGCCGCCTCGGCCtagc

F_tsp-17_pPR3STE, gctaGGCCATTACGGCCTTgcaacagaa-

cgtgatggc

R_tsp-17_pPR3STE, gtcaGGCCGAGGCGGCCCCgtagtcatc-

tcgaattacatggta

The TG2470 and TG2439 strains were generated by biolistic

bombardment of unc-119(ed3) worms with AH001 and NM001

plasmids, respectively. The TG2440 and TG2474 strains were

generated by microinjections of unc-119 (ed3) mutants.

Mutagenesis and mapping
EMS was added to 4 ml synchronized young adult worms in

M9 buffer to a final concentration of 25 mM and incubated for

4 h at 20uC. Mutagenized worms were washed in M9 buffer and

incubated at 15uC. Synchronous F1-generation L1 larvae were

used for screening. F2-generation L1 larvae from mutagenized

TG2435 dat-1::gfp (BY200) worms were used for the mutagenesis

screen. L1 larvae were intoxicated with 10 mM 6-OHDA. After

72 h, worms with the highest incidence of neurodegeneration were

isolated and scored as hypersensitive. SNP mapping of mutants

was done as previously described [69].

Drug treatment of worms
To obtain synchronized L1 larvae, 1–10 adult worms (24 h

post-L4 stage) were incubated in 70 ml M9 without food on at

20uC, with shaking at 500 rpm for 27–40 h to lay eggs. After

hatching, all L1 larvae were collected. Approximately 50 L1 larvae

were added to an assay mix (50 ml) containing 10 mM 6-OHDA

and 40 mM ascorbic acid, and incubated for 1 h at 20uC, with

shaking at 500 rpm. For co-treatment with imipramine or

haloperidol, the respective compounds were added to the assay

mix at the same time as 6-OHDA. After a 1-h incubation, M9

buffer (100 ml) was added to the assay mix, and the solution

containing L1 worms was then transferred to an unseeded NGM

plate. After 30 min, L1 worms were individually picked and

transferred onto a fresh NGM plate seeded with a line of OP50

bacteria to ease subsequent scoring. Intoxicated worms were

incubated at 20uC and scored for dopaminergic neurodegenera-

tion every 24 h for 3 days. All 6-OHDA treatments were done in

triplicate and at least 80–100 worms were tested for each strain

and condition.

Swimming-induced paralysis assay
All worms used for SWIP analysis were grown on NGM plates

seeded with E. coli OP50 bacteria. For each test, 5–10 L4

hermaphrodites or 10 L1 worms were placed into 40 ml water in a

single well of a Pyrex Spot Plate. Paralyzed worms were counted at

1-min intervals using a Leica dissecting microscope [70]. L1

worms were hand picked from seeded plates, 12 hours after the

addition of embryos, obtained by bleaching.

Scoring neuronal degeneration and image acquisition
For semi-quantitative analyses of 6-OHDA-induced degenera-

tion, worms were examined using a Leica fluorescent dissecting

microscope. The absence of all eight dopaminergic neurons in

worms was scored as ‘‘complete loss.’’ The presence of a complete,

intact set of eight dopaminergic neurons was scored as ‘‘no loss.’’

Any intermediate situation, for example a damaged or absent

subset of dopaminergic neurons or missing dendrite portions, was

scored as a ‘‘partial loss.’’ Neurodegeneration resulting from cat-2
overexpression was scored using developmentally synchronized

worms, as indicated. A DeltaVision microscope (Applied Precision)

was used to acquire images. All images were analyzed using

softWoRx Suite and softWoRx Explorer software (Applied

Precision).

DNA constructs for the split-ubiquitin system
Total RNA was isolated and reverse transcribed from wild-type

C. elegans (N2) using an RNeasy mini kit (QIAGEN). Coding

regions of dop-2c (K09G1.4c) and dat-1 (T23G5.5) were amplified

and cloned into pBT3-STE vectors (Dual Systems Schlieren) for

expression of a fusion protein containing the C-terminal half of

ubiquitin (Cub) and the artificial transcription factor LexA-VP16.

tsp-17b (C02F12.1b) cDNA was amplified and cloned into prey

vector pPR3-STE for expression of a fusion protein containing a

mutated version of the N-terminal half of ubiquitin (NubG).

Constructs were verified by DNA sequencing, and sequences of

the respective constructs can be provided upon request. Yeast

transformations and pairwise interaction assays were done

according to the protocol of Dualsystems Schlieren.

C. elegans cell culture and DAT-1 uptake assay
Embryonic cells were prepared as described previously

(Christensen, M, et al 2002, Neuron). The uptake assay was done

according to Carvelli et al. (2004). Briefly, C. elegans cells cultured

for 2 days were washed twice with KRH buffer (120 mM NaCl,

4.7 mM KCl, 1.2 mM KH2P04, 10 mM Hepes, 2.2 CaC12,

10 mM glucose, 0.1 mM ascorbic acid and 0.1 mM tropolone and
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0.1 mM pargyline mono amine oxidase inhibitors) and incubated

with 50 or 250 nM [3H]-dopamine for 20 min at room

temperature. Uptake was terminated by three washes of ice-cold

KRH buffer, and cells were lysed by incubation with 1% SDS for

20 min. [3H]-dopamine uptake was measured in each genetic

background, based on radioactive counts, using a scintillation

counter (PerkinElmer Liquid Scintillation Analyzer Tri-Carb

1800TR). Total cell numbers were determined with a hemocy-

tometer and were used to normalize radioactive counts. Cell

numbers varied between experiments but were not biased towards

mutant or control strain: There were 400,000/400,000, 75,000/

150,000 and 1,000,000/400,000 cells for control/mutant strain,

respectively. Cell extraction and uptake assays were always done

simultaneously for both strains. The error bars depict the standard

error of the means (SEM).

Statistical analysis
Neurodegeneration and SWIP assay data are presented as the

average of three biological replicates, and error bars represent the

standard error of the mean, unless otherwise indicated. When

assaying neurodegeneration statistical significance was calculated

using the Chi-Sqare test using Yates p-values. http://www.

quantpsy.org/chisq/chisq.htm. The statistical significance of

differences in the SWIP assays (Figure 5) was calculated using

the two-tailed t-test.

Supporting Information

Figure S1 Neurodegeneration induced by various doses
of 6-OHDA, scored 72 h post intoxication.
(TIF)

Figure S2 Phylogenetic analysis of TSP-17. For phyloge-

netic analysis, sequences were aligned by ClustalW using Jalview

software and an un-rooted phylogenetic tree was generated using

SplitsTree. Bootstrap values at the center of the tree (magnified in

the red box) indicate divergence. Abbreviations are as follows. As,

Ascaris suum; Hm, Hydra magnipapillata; Ix, Ixodes scapularis;
Pp, Pristionchus pacificus; Hs, Homo sapiens; Nv, Nematostella
vectensis; Dm, Drosophila melanogaster; Bm, Brugia malai; Ci,

Ciona intestinalis; Ce, Caenorhabditis elegans; Cbn, Caenorhabdi-
tis brenneri; Cre, Caenorhabditis remanei; Cbr, Caenorhabditis
briggsae. C. elegans TSP-17 is highlighted by a red box.

(TIF)

Figure S3 A. TSP-17(GT1681)::GFP expression in the
vulva (left panel) and the spermatheca (right panel).
Strain TG2474 was used. Images are projections of six Z-stacks.

B. TSP-17 expression in ADE and CEP cell bodies.

(TIF)

Figure S4 TSP-17 overexpression in a wild-type back-
ground induces neurodegeneration without 6-OHDA
treatment. Strains used were (A) TG2440 for TSP-17 overex-

pression and (B) TG2474 TSP-17(gt1681) overexpression.

(TIF)

Figure S5 Analysis of tsp-17 behavioral phenotypes. A.
Basal slowing response. Movement before (grey bars)
and after reaching a lawn of bacteria (white bars) is
indicated. B. Quantitative analysis of SWIP behavior in
L1-stage worms, over 20 min. The SWIP phenotype of L1-

stage tsp-17(tm4995) worms is not rescued by cat-2. Assays were

done in triplicate. Error bars represent the standard error of the

mean. C, D. L1 ‘‘swimming-induced lethality’’ pheno-

types. Worms were incubated as for the L4 swimming induced

paralysis assay and plated on seeded plates after the indicated

times to assess viability. Representative pictures are shown in D.

(TIF)

Figure S6 Analysis of 6-OHDA mediated neurodegener-
ation in cat-2, bas-1 and cat-1 strains. Data presented is

from scoring the extent of neurodegeneration 72 h post 6-OHDA

intoxication.

(TIF)

Figure S7 Dopamine receptors act antagonistically to
modulate the 6-OHDA sensitivity of tsp-17(tm4995)
mutants. Worms of the indicated genotypes were intoxicated

with the indicated doses of 6-OHDA and scored 72 h after

intoxication. Experiments were done in triplicate and the average

data is presented.

(TIF)

Figure S8 DAT-1::YFP expression and half live is not
altered in tsp-17(gt1681) mutant worms. A. Expression of

TSP-17 in CEP neurons in wild-type (TG2470) and tsp-
17(gt1681) mutants (TG2471). B. Structural Illumination ‘super

resolution’ images of a CEP dendrite in wild-type and tsp-
17(gt1681) worms showing membrane localization of DAT-

1::YFP relative to a cytoplasmic mCherry marker. There are no

differences in expression. The crosshatching-like pattern is an

artifact introduced by the diffraction grid used in acquisition, not a

feature of expression. Scale bar (white) is 5 mm in length. Images

are 18 mm618 mm. C. Representative FRAP images of DAT-

1::YFP taken prior to bleaching (26 s), immediately after the

bleach event (2 s) and after 2 minutes post bleaching (120 s).

Images are 18 mm618 mm. D. Representative graphs showing

normalized recovery curves in wild-type (top) and tsp-17(gt1681)
(bottom) worms. Example half time of recovery (t1/2) for each

graph is shown at the intersection of the dashed lines. The mobile

fraction is the point at which the curve plateaus. E. Average values

and standard deviation for t1/2 and mobile fractions for DAT-

1::YFP wild-type and tsp-17(gt1681) worms (n = 7).

(TIF)

Figure S9 Dopamine receptors act antagonistically to
modulate the 6-OHDA sensitivity of tsp-17(tm4995)
mutants. Worms of the indicated genotypes were intoxicated

with 10 mM 6-OHDA and scored 72 h after intoxication.

Experiments were done in triplicate and the average data is

presented.

(TIF)
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