214 research outputs found
Students’ Use of Symmetry with Gauss’s Law
To study introductory student difficulties with electrostatics, we compared student techniques when finding the electric field for spherically symmetric and non-spherically symmetric charged conductors. We used short interviews to design a free-response and multiple-choice-multiple-response survey that was administered to students in introductory calculus-based courses. We present the survey results and discuss them in light of Singh\u27s results for Gauss\u27s Law, Collins and Ferguson\u27s epistemic forms and games, and Tuminaro\u27s extension of games and frames
How accurately is ncRNA aligned within whole-genome multiple alignments?
<p>Abstract</p> <p>Background</p> <p>Multiple alignment of homologous DNA sequences is of great interest to biologists since it provides a window into evolutionary processes. At present, the accuracy of whole-genome multiple alignments, particularly in noncoding regions, has not been thoroughly evaluated.</p> <p>Results</p> <p>We evaluate the alignment accuracy of certain noncoding regions using noncoding RNA alignments from Rfam as a reference. We inspect the MULTIZ 17-vertebrate alignment from the UCSC Genome Browser for all the human sequences in the Rfam seed alignments. In particular, we find 638 instances of chimeric and partial alignments to human noncoding RNA elements, of which at least 225 can be improved by straightforward means. As a byproduct of our procedure, we predict many novel instances of known ncRNA families that are suggested by the alignment.</p> <p>Conclusion</p> <p>MULTIZ does a fairly accurate job of aligning these genomes in these difficult regions. However, our experiments indicate that better alignments exist in some regions.</p
Caregiver-reported delay in presentation to pediatric emergency departments for fear of contracting COVID-19: a multi-national cross-sectional study
Objective: To determine if caregivers of children presenting to pediatric emergency departments (EDs) during the COVID-19 pandemic are delaying presenting to care for fear of contracting COVID-19.
Methods: This was a pre-planned secondary analysis of a cross-sectional survey study of caregivers accompanying their children aged 0-19 years to 16 pediatric EDs in 5 countries from May to June 2020. An anonymous online survey, completed by caregivers via RedCAP, included caregiver and child demographics, presenting complaints, if they delayed presentation and whether symptoms worsened during this interval, as well as caregiver concern about the child or caregiver having COVID-19 at the time of ED visit.
Results: Of 1543 caregivers completing the survey, 287 (18.6%) reported a delay in seeking ED care due to concerns of contracting COVID-19 in the hospital. Of those, 124 (43.2%) stated their child's symptoms worsened during the waiting interval. Caregiver relationship to child [mother] (OR 1.85, 95% CI 1.27-2.76), presence of chronic illness in child (OR 1.78. 95% CI 1.14-2.79), younger age of caregiver (OR 0.965, 95% CI 0.943-0.986), and caregiver concerns about lost work during the pandemic (OR 1.08, 95% CI 1.04-1.12) were independently associated with a COVID-19-related delayed presentation in multivariable regression analysis.
Conclusions: Almost one in five caregivers reported delaying ED presentation for their ill or injured child specifically due to fear of contracting COVID-19 while in hospital, with mothers, younger caregivers, caregivers of children with chronic illness, and those concerned about lost work more likely to report delaying ED presentation.
Keywords: COVID-19; Caregivers; Children; Emergency department; Presentation dela
The ENIGMA Stroke Recovery Working Group: Big data neuroimaging to study brain–behavior relationships after stroke
The goal of the Enhancing Neuroimaging Genetics through Meta‐Analysis (ENIGMA) Stroke Recovery working group is to understand brain and behavior relationships using well‐powered meta‐ and mega‐analytic approaches. ENIGMA Stroke Recovery has data from over 2,100 stroke patients collected across 39 research studies and 10 countries around the world, comprising the largest multisite retrospective stroke data collaboration to date. This article outlines the efforts taken by the ENIGMA Stroke Recovery working group to develop neuroinformatics protocols and methods to manage multisite stroke brain magnetic resonance imaging, behavioral and demographics data. Specifically, the processes for scalable data intake and preprocessing, multisite data harmonization, and large‐scale stroke lesion analysis are described, and challenges unique to this type of big data collaboration in stroke research are discussed. Finally, future directions and limitations, as well as recommendations for improved data harmonization through prospective data collection and data management, are provided
Rare variants in single-minded 1 (SIM1) are associated with severe obesity
Single-minded 1 (SIM1) is a basic helix-loop-helix transcription factor involved in the development and function of the paraventricular nucleus of the hypothalamus. Obesity has been reported in Sim1 haploinsufficient mice and in a patient with a balanced translocation disrupting SIM1. We sequenced the coding region of SIM1 in 2,100 patients with severe, early onset obesity and in 1,680 controls. Thirteen different heterozygous variants in SIM1 were identified in 28 unrelated severely obese patients. Nine of the 13 variants significantly reduced the ability of SIM1 to activate a SIM1-responsive reporter gene when studied in stably transfected cells coexpressing the heterodimeric partners of SIM1 (ARNT or ARNT2). SIM1 variants with reduced activity cosegregated with obesity in extended family studies with variable penetrance. We studied the phenotype of patients carrying variants that exhibited reduced activity in vitro. Variant carriers exhibited increased ad libitum food intake at a test meal, normal basal metabolic rate, and evidence of autonomic dysfunction. Eleven of the 13 probands had evidence of a neurobehavioral phenotype. The phenotypic similarities between patients with SIM1 deficiency and melanocortin 4 receptor (MC4R) deficiency suggest that some of the effects of SIM1 deficiency on energy homeostasis are mediated by altered melanocortin signaling.Shwetha Ramachandrappa, Anne Raimondo, Anna M.G. Cali, Julia M. Keough, Elana Henning, Sadia Saeed, Amanda Thompson, Sumedha Garg, Elena G. Bochukova, Soren Brage, Victoria Trowse, Eleanor Wheeler, Adrienne E. Sullivan, Mehul Dattani, Peter E. Clayton, Vippan Datta, John B. Bruning, Nick J. Wareham, Stephen O'Rahilly, Daniel J. Peet, Ines Barroso, Murray L. Whielaw and I. Sadaf Farooq
Genetic assessment of age-associated Alzheimer disease risk: Development and validation of a polygenic hazard score
Background
Identifying individuals at risk for developing Alzheimer disease (AD) is of utmost importance. Although genetic studies have identified AD-associated SNPs in APOE and other genes, genetic information has not been integrated into an epidemiological framework for risk prediction.
Methods and findings
Using genotype data from 17,008 AD cases and 37,154 controls from the International Genomics of Alzheimer’s Project (IGAP Stage 1), we identified AD-associated SNPs (at p < 10−5 ). We then integrated these AD-associated SNPs into a Cox proportional hazard model using genotype data from a subset of 6,409 AD patients and 9,386 older controls from Phase 1 of the Alzheimer’s Disease Genetics Consortium (ADGC), providing a polygenic hazard score (PHS) for each participant. By combining population-based incidence rates and the genotype-derived PHS for each individual, we derived estimates of instantaneous risk for developing AD, based on genotype and age, and tested replication in multiple independent cohorts (ADGC Phase 2, National Institute on Aging Alzheimer’s Disease Center [NIA ADC], and Alzheimer’s Disease Neuroimaging Initiative [ADNI], total n = 20,680). Within the ADGC Phase 1 cohort, individuals in the highest PHS quartile developed AD at a considerably lower age and had the highest yearly AD incidence rate. Among APOE ε3/3 individuals, the PHS modified expected age of AD onset by more than 10 y between the lowest and highest deciles (hazard ratio 3.34, 95% CI 2.62–4.24, p = 1.0 × 10−22). In independent cohorts, the PHS strongly predicted empirical age of AD onset (ADGC Phase 2, r = 0.90, p = 1.1 × 10−26) and longitudinal progression from normal aging to AD (NIA ADC, Cochran–Armitage trend test, p = 1.5 × 10−10), and was associated with neuropathology (NIA ADC, Braak stage of neurofibrillary tangles, p = 3.9 × 10−6 , and Consortium to Establish a Registry for Alzheimer’s Disease score for neuritic plaques, p = 6.8 × 10−6 ) and in vivo markers of AD neurodegeneration (ADNI, volume loss within the entorhinal cortex, p = 6.3 × 10−6 , and hippocampus, p = 7.9 × 10−5 ). Additional prospective validation of these results in non-US, non-white, and prospective community-based cohorts is necessary before clinical use.
Conclusions
We have developed a PHS for quantifying individual differences in age-specific genetic risk for AD. Within the cohorts studied here, polygenic architecture plays an important role in modifying AD risk beyond APOE. With thorough validation, quantification of inherited genetic variation may prove useful for stratifying AD risk and as an enrichment strategy in therapeutic trials
Hundreds of variants clustered in genomic loci and biological pathways affect human height
Most common human traits and diseases have a polygenic pattern of inheritance: DNA sequence variants at many genetic loci influence the phenotype. Genome-wide association (GWA) studies have identified more than 600 variants associated with human traits, but these typically explain small fractions of phenotypic variation, raising questions about the use of further studies. Here, using 183,727 individuals, we show that hundreds of genetic variants, in at least 180 loci, influence adult height, a highly heritable and classic polygenic trait. The large number of loci reveals patterns with important implications for genetic studies of common human diseases and traits. First, the 180 loci are not random, but instead are enriched for genes that are connected in biological pathways (P = 0.016) and that underlie skeletal growth defects (P < 0.001). Second, the likely causal gene is often located near the most strongly associated variant: in 13 of 21 loci containing a known skeletal growth gene, that gene was closest to the associated variant. Third, at least 19 loci have multiple independently associated variants, suggesting that allelic heterogeneity is a frequent feature of polygenic traits, that comprehensive explorations of already-discovered loci should discover additional variants and that an appreciable fraction of associated loci may have been identified. Fourth, associated variants are enriched for likely functional effects on genes, being over-represented among variants that alter amino-acid structure of proteins and expression levels of nearby genes. Our data explain approximately 10% of the phenotypic variation in height, and we estimate that unidentified common variants of similar effect sizes would increase this figure to approximately 16% of phenotypic variation (approximately 20% of heritable variation). Although additional approaches are needed to dissect the genetic architecture of polygenic human traits fully, our findings indicate that GWA studies can identify large numbers of loci that implicate biologically relevant genes and pathways.
The PLIN4 Variant rs8887 Modulates Obesity Related Phenotypes in Humans through Creation of a Novel miR-522 Seed Site
PLIN4 is a member of the PAT family of lipid storage droplet
(LSD) proteins. Associations between seven single nucleotide polymorphisms
(SNPs) at human PLIN4 with obesity related phenotypes were
investigated using meta-analysis followed by a determination if these phenotypes
are modulated by interactions between PLIN4 SNPs and dietary
PUFA. Samples consisted of subjects from two populations of European ancestry.
We demonstrated association of rs8887 with anthropometrics. Meta-analysis
demonstrated significant interactions between the rs8887 minor allele with PUFA
n3 modulating anthropometrics. rs884164 showed interaction with both n3 and n6
PUFA modulating anthropometric and lipid phenotypes. In silico
analysis of the PLIN4 3′UTR sequence surrounding the
rs8887 minor A allele predicted a seed site for the human microRNA-522
(miR-522), suggesting a functional mechanism. Our data showed that a PLIN4
3′UTR luciferase reporter carrying the A allele of rs8887 was reduced in
response to miR-522 mimics compared to the G allele. These results suggest
variation at the PLIN4 locus, and its interaction with PUFA as
a modulator of obesity related phenotypes, acts in part through creation of a
miR-522 regulatory site
RANTES/CCL5 and risk for coronary events:Results from the MONICA/KORA Augsburg case-cohort, Athero-express and CARDIoGRAM studies
Background: The chemokine RANTES (regulated on activation, normal T-cell expressed and secreted)/CCL5 is involved in the pathogenesis of cardiovascular disease in mice, whereas less is known in humans. We hypothesised that its relevance for atherosclerosis should be reflected by associations between CCL5 gene variants, RANTES serum concentrations and protein levels in atherosclerotic plaques and risk for coronary events. Methods and Findings: We conducted a case-cohort study within the population-based MONICA/KORA Augsburg studies. Baseline RANTES serum levels were measured in 363 individuals with incident coronary events and 1,908 non-cases (mean follow-up: 10.2±4.8 years). Cox proportional hazard models adjusting for age, sex, body mass index, metabolic factors and lifestyle factors revealed no significant association between RANTES and incident coronary events (HR [95% CI] for increasing RANTES tertiles 1.0, 1.03 [0.75-1.42] and 1.11 [0.81-1.54]). None of six CCL5 single nucleotide polymorphisms and no common haplotype showed significant associations with coronary events. Also in the CARDIoGRAM study (>22,000 cases, >60,000 controls), none of these CCL5 SNPs was significantly associated with coronary artery disease. In the prospective Athero-Express biobank study, RANTES plaque levels were measured in 606 atherosclerotic lesions from patients who underwent carotid endarterectomy. RANTES content in atherosclerotic plaques was positively associated with macrophage infiltration and inversely associated with plaque calcification. However, there was no significant association between RANTES content in plaques and risk for coronary events (mean follow-up 2.8±0.8 years). Conclusions: High RANTES plaque levels were associated with an unstable plaque phenotype. However, the absence of associations between (i) RANTES serum levels, (ii) CCL5 genotypes and (iii) RANTES content in carotid plaques and either coronary artery disease or incident coronary events in our cohorts suggests that RANTES may not be a novel coronary risk biomarker. However, the potential relevance of RANTES levels in platelet-poor plasma needs to be investigated in further studies.</p
Associations of iron metabolism genes with blood manganese levels: a population-based study with validation data from animal models
<p>Abstract</p> <p>Background</p> <p>Given mounting evidence for adverse effects from excess manganese exposure, it is critical to understand host factors, such as genetics, that affect manganese metabolism.</p> <p>Methods</p> <p>Archived blood samples, collected from 332 Mexican women at delivery, were analyzed for manganese. We evaluated associations of manganese with functional variants in three candidate iron metabolism genes: <it>HFE </it>[hemochromatosis], <it>TF </it>[transferrin], and <it>ALAD </it>[δ-aminolevulinic acid dehydratase]. We used a knockout mouse model to parallel our significant results as a novel method of validating the observed associations between genotype and blood manganese in our epidemiologic data.</p> <p>Results</p> <p>Percentage of participants carrying at least one copy of <it>HFE C282Y</it>, <it>HFE H63D</it>, <it>TF P570S</it>, and <it>ALAD K59N </it>variant alleles was 2.4%, 17.7%, 20.1%, and 6.4%, respectively. Percentage carrying at least one copy of either <it>C282Y </it>or <it>H63D </it>allele in <it>HFE </it>gene was 19.6%. Geometric mean (geometric standard deviation) manganese concentrations were 17.0 (1.5) μg/l. Women with any <it>HFE </it>variant allele had 12% lower blood manganese concentrations than women with no variant alleles (β = -0.12 [95% CI = -0.23 to -0.01]). <it>TF </it>and <it>ALAD </it>variants were not significant predictors of blood manganese. In animal models, <it>Hfe</it><sup>-/- </sup>mice displayed a significant reduction in blood manganese compared with <it>Hfe</it><sup>+/+ </sup>mice, replicating the altered manganese metabolism found in our human research.</p> <p>Conclusions</p> <p>Our study suggests that genetic variants in iron metabolism genes may contribute to variability in manganese exposure by affecting manganese absorption, distribution, or excretion. Genetic background may be critical to consider in studies that rely on environmental manganese measurements.</p
- …