2,729 research outputs found

    Differential Uptake of Gold Nanoparticles by 2 Species of Tadpole, the Wood Frog (Lithobates Sylvaticus) and the Bullfrog (Lithobates Catesbeianus)

    Full text link
    Engineered nanoparticles are aquatic contaminants of emerging concern that exert ecotoxicological effects on a wide variety of organisms. We exposed cetyltrimethylammonium bromide–capped spherical gold nanoparticles to wood frog and bullfrog tadpoles with conspecifics and in combination with the other species continuously for 21 d, then measured uptake and localization of gold. Wood frog tadpoles alone and in combination with bullfrog tadpoles took up significantly more gold than bullfrogs. Bullfrog tadpoles in combination with wood frogs took up significantly more gold than controls. The rank order of weight-normalized gold uptake was wood frogs in combination \u3e wood frogs alone \u3e bullfrogs in combination \u3e bullfrogs alone \u3e controls. In all gold-exposed groups of tadpoles, gold was concentrated in the anterior region compared with the posterior region of the body. The concentration of gold nanoparticles in the anterior region of wood frogs both alone and in combination with bullfrogs was significantly higher than the corresponding posterior regions. We also measured depuration time of gold in wood frogs. After 21 d in a solution of gold nanoparticles, tadpoles lost \u3e83% of internalized gold when placed in gold-free water for 5 d. After 10 d in gold-free water, tadpoles lost 94% of their gold. After 15 d, gold concentrations were below the level of detection. Our finding of differential uptake between closely related species living in similar habitats with overlapping geographical distributions argues against generalizing toxicological effects of nanoparticles for a large group of organisms based on measurements in only one species

    The Circumstellar Disk of the Butterfly Star in Taurus

    Full text link
    We present a model of the circumstellar environment of the so-called ``Butterfly Star'' in Taurus (IRAS 04302+2247). The appearance of this young stellar object is dominated by a large circumstellar disk seen edge-on and the light scattering lobes above the disk. The model is based on multi-wavelength continuum observations: Millimeter maps and high-resolution near-infrared images obtained with HST/NICMOS. It was found that the disk and envelope parameters are comparable with those of the circumstellar environment of other young stellar objects. A main result is that the dust properties must be different in the circumstellar disk and in the envelope: While a grain size distribution with grain radii up to 100 micron is required to reproduce the millimeter observations of the disk, the envelope is dominated by smaller grains similar to those of the interstellar medium. Preprint with high figure quality available at: http://spider.ipac.caltech.edu/staff/swolf/homepage/public/preprints/i04302.psComment: 32 pages, 9 figure

    The structure of protostellar envelopes derived from submillimeter continuum images

    Get PDF
    High dynamic range imaging of submillimeter dust emission from the envelopes of eight young protostars in the Taurus and Perseus star-forming regions has been carried out using the SCUBA submillimeter camera on the James Clerk Maxwell Telescope. Good correspondence between the spectral classifications of the protostars and the spatial distributions of their dust emission is observed, in the sense that those with cooler spectral energy distributions also have a larger fraction of the submillimeter flux originating in an extended envelope compared with a disk. This results from the cool sources having more massive envelopes rather than warm sources having larger disks. Azimuthally-averaged radial profiles of the dust emission are used to derive the power-law index of the envelope density distributions, p (defined by rho proportional to r^-p), and most of the sources are found to have values of p consistent with those predicted by models of cloud collapse. However, the youngest protostars in our sample, L1527 and HH211-mm, deviate significantly from the theoretical predictions, exhibiting values of p somewhat lower than can be accounted for by existing models. For L1527 heating of the envelope by shocks where the outflow impinges on the surrounding medium may explain our result. For HH211-mm another explanation is needed, and one possibility is that a shallow density profile is being maintained in the outer envelope by magnetic fields and/or turbulence. If this is the case star formation must be determined by the rate at which the support is lost from the cloud, rather than the hydrodynamical properties of the envelope, such as the sound speed.Comment: Accepted for publication in the Astrophysical Journa

    Photocatalytic Hydrogen Production at Titania-Supported Pt Nanoclusters that are Derived from Surface-Anchored Molecular Precursors

    Get PDF
    Degussa P-25 TiO2 bearing surface-anchored Pt(dcbpy)Cl-2 [dcbpy = 4,4\u27-dicarboxylic acid-2,2\u27-bipyridine] prepared with systematically varied surface coverage produced Pt-0 nanoparticles under bandgap illumination in the presence of methanol hole scavengers. Energy-dispersive X-ray spectroscopy confirmed the presence of elemental platinum in the newly formed nanoparticles during scanning transmission electron microscopy (STEM) eleriments. According to the statistical analysis of numerous STEM images, the Pt-0 nanoclusters were distributed in a segregated manner throughout the titania surface, ranging in size from 1 to 3 nm in diameter. The final achieved nanoparticle size and net hydrogen production were determined as a function of the Pt(dcbpy)Cl-2 surface coverage as well as other systematically varied experimental parameters. The hybrid Pt/TiO2 nanomaterials obtained upon complete decomposition of the Pt(dcbpy)Cl-2 precursor displayed higher photocatalytic activity (300 mu mol/h) for hydrogen evolution in aqueous suspensions when compared with platinized TiO2 derived from H2PtCl6 precursors (130 mu mol/h), as ascertained through gas chromatographic analysis of the photoreactor headspace under identical experimental conditions. The conclusion that H-2 was evolved from Pt-0 sites rather than from molecular Pt(dcbpy)Cl-2 entities was independently supported by Hg and CO poisoning experiments. The formation of small Pt nanopartides (1.5 nm in diameter) prevail at low surface coverage of Pt(dcbpy)Cl-2 on TiO2 (0.5 to 2% by mass) that exhibit enhanced turnover frequencies with respect to all other materials investigated, induding those produced from the in situ photochemical reduction of H2PtCl6 center dot Pt-II precursor absorption in the ultraviolet region appeared to be partially responsible for attenuation of the H-2 evolution rate at higher Pt(dcbpy)Cl-2 surface coverage. The nanoparticle size and hydrogen evolution characteristics of the surface-anchored materials generated through photodeposition were directly compared with those derived from chemical reduction using NaBH4. Finally, Degussa P-25 thin films deposited on FTO substrates enabled electrochemically induced (-1.0 V vs Ag/AgCl, pH 7.0, phosphate buffer) electron trapping (TiO2(e(-))) throughout the titania. After removal of the applied bias and the anaerobic introduction of Pt(dcbpy)Cl-2, the accumulated electrons reduce this molecular species to Pt-0 nanoparticles on the titania electrode surface, as confirmed by TEM measurements, with the concomitant production of H-2 gas. The combined experiments illustrate that TiO2(e(-)) generated with bandgap excitation or via electrochemical bias affords the reduction of Pt(dcbpy)Cl-2 to Pt-0 nanoparticles that in turn are responsible for heterogeneous hydrogen gas evolution

    The Spitzer Gould Belt Survey of Large Nearby Interstellar Clouds: Discovery of A Dense Embedded Cluster in the Serpens-Aquila Rift

    Get PDF
    We report the discovery of a nearby, embedded cluster of young stellar objects, associated filamentary infrared dark cloud, and 4.5 mu m shock emission knots from outflows detected in Spitzer IRAC mid-infrared imaging of the Serpens-Aquila Rift obtained as part of the Spitzer Gould Belt Legacy Survey. We also present radial velocity measurements of the region from molecular line observations obtained with the Submillimeter Array (SMA) that suggest the cluster is comoving with the Serpens Main embedded cluster to the north. We therefore assign it 3 degrees the same distance, 260 pc. The core of the new cluster, which we call Serpens South, is composed of an unusually large fraction of protostars (77%) at high mean surface density (> 430 pc(-2)) and short median nearest neighbor spacing (3700 AU). We perform basic cluster structure characterization using nearest neighbor surface density mapping of the YSOs and compare our findings to other known clusters with equivalent analyses available in the literature.Astronom

    Systematic Molecular Differentiation in Starless Cores

    Get PDF
    (Abridged) We present evidence that low-mass starless cores, the simplest units of star formation, are systematically differentiated in their chemical composition. Molecules including CO and CS almost vanish near the core centers, where the abundance decreases by one or two orders of magnitude. At the same time, N2H+ has a constant abundance, and the fraction of NH3 increases toward the core center. Our conclusions are based on a study of 5 mostly-round starless cores (L1498, L1495, L1400K, L1517B, and L1544), which we have mappedin C18O(1-0), C17O(1-0), CS(2-1), C34S(2-1), N2H+(1-0), NH3(1,1) and (2,2), and the 1.2 mm continuum. For each core we have built a model that fits simultaneously the radial profile of all observed emission and the central spectrum for the molecular lines. The observed abundance drops of CO and CS are naturally explained by the depletion of these molecules onto dust grains at densities of 2-6 10^4 cm-3. N2H+ seems unaffected by this process up to densities of several 10^5, while the NH3 abundance may be enhanced by reactions triggered by the disappearance of CO from the gas phase. With the help of our models, we show that chemical differentiation automatically explains the discrepancy between the sizes of CS and NH3 maps, a problem which has remained unexplained for more than a decade. Our models, in addition, show that a combination of radiative transfer effects can give rise to the previously observed discrepancy in the linewidth of these two tracers. Although this discrepancy has been traditionally interpreted as resulting from a systematic increase of the turbulent linewidth with radius, our models show that it can arise in conditions of constant gas turbulence.Comment: 25 pages, 9 figures, accepted by Ap

    Genomic Organization, Splice Variants and Expression of CGMl, a CD66-related Member of the Carcinoembryonic Antigen Gene Family

    Get PDF
    The tumor marker carcinoembryonic antigen (CEA) belongs to a family of proteins which are composed of one immunogiobulin variable domain and a varying number of immunoglobulin constant-like domains. Most of the membrane-bound members, which are anchored either by a glycosylphosphatidylinositol moiety or a transmembrane domain, have been shown to convey cell adhesion in vitro. Here we describe two splice variants of CGMI. a transmembrane member of the CEA family without immunoglobulin constant.like domains. CGM1a and CGM1c contain cytopiasmic domains of 71 and 31 amino acids, respectively, The cytoplasmic region of CGM1a is encoded by four exons (Cyt1-Cyt4). Differential splicing of the Cyt1 exon (53 bp)..

    Deuterated formaldehyde in rho Ophiuchi A

    Get PDF
    From mapping observations of H2CO, HDCO, and D2CO, we have determined how the degree of deuterium fractionation changes over the central 3'x3' region of rho Oph A. The multi-transition data of the various H2CO isotopologues, as well as from other molecules (e.g., CH3OH and N2D+) present in the observed bands, were analysed using both the standard type rotation diagram analysis and, in selected cases, a more elaborate method of solving the radiative transfer for optically thick emission. In addition to molecular column densities, the analysis also estimates the kinetic temperature and H2 density. Toward the SM1 core in rho Oph A, the H2CO deuterium fractionation is very high. In fact, the observed D2CO/HDCO ratio is 1.34+/-0.19, while the HDCO/H2CO ratio is 0.107+/-0.015. This is the first time, to our knowledge, that the D2CO/HDCO abundance ratio is observed to be greater than 1. The kinetic temperature is in the range 20-30 K in the cores of rho Oph A, and the H2 density is (6-10)x10^5 cm-3. We estimate that the total H2 column density toward the deuterium peak is (1-4)x10^23 cm-2. As depleted gas-phase chemistry is not adequate, we suggest that grain chemistry, possibly due to abstraction and exchange reactions along the reaction chain H2CO -> HDCO -> D2CO, is at work to produce the very high deuterium levels observed.Comment: 17 pages, 11 figures, accepted for publication in Astronomy & Astrophysic

    Are people who participate in cultural activities more satisfied with life?

    Get PDF
    The influence of various aspects of life on wellbeing has been extensively researched. However, despite little empirical evidence, participation in leisure activities has been assumed to increase subjective wellbeing. Leisure is important because it is more under personal control than other sources of life satisfaction. This study asked whether people who participate in cultural leisure activities have higher life satisfaction than people who do not, if different types of leisure have the same influence on life satisfaction and if satisfaction is dependent on the frequency of participation or the number of activities undertaken. It used data from UKHLS Survey to establish associations between type, number and frequency of participation in leisure activities and life satisfaction. Results showed an independent and positive association of participation in sport, heritage and active-creative leisure activities and life satisfaction but not for participation in popular entertainment, theatre hobbies and museum/galleries. The association of reading hobbies and sedentary-creative activities and life satisfaction was negative. High life satisfaction was associated with engaging in a number of different activities rather than the frequency of participation in each of them. The results have implications for policy makers and leisure services providers, in particular those associated with heritage recreation. Subjective wellbeing measures, such as life satisfaction, and not economic measures alone should be considered in the evaluation of services. The promotion of leisure activities which are active and promote social interaction should be considered in programmes aimed at improving the quality of life
    • …
    corecore