173 research outputs found

    Supersonic aeroelastic instability results for a NASP-like wing model

    Get PDF
    An experimental study and an analytical study have been conducted to examine static divergence for hypersonic-vehicle wing models at supersonic conditions. A supersonic test in the Langley Unitary Plan Wind Tunnel facility was conducted for two wind-tunnel models. These models were nearly identical with the exception of airfoil shape. One model had a four-percent maximum thickness airfoil and the other model had an eight-percent maximum thickness airfoil. The wing models had low-aspect ratios and highly swept leading edges. The all-movable wing models were supported by a single-pivot mechanism along the wing root. For both of the wind-tunnel models, configuration changes could be made in the wing-pivot location along the wing root and in the wing-pivot pitch stiffness. Three divergence conditions were measured for the four-percent thick airfoil model in the Mach number range of 2.6 to 3.6 and one divergence condition was measured for the eight-percent thick airfoil model at a Mach number of 2.9. Analytical divergence calculations were made for comparison with experimental results and to evaluate the parametric effects of wing-pivot stiffness, wing-pivot location, and airfoil thickness variations. These analyses showed that decreasing airfoil thickness, moving the wing-pivot location upstream, or increasing the pitch-pivot stiffness have the beneficial effect of increasing the divergence dynamic pressures. The calculations predicted the trend of experimental divergence dynamic pressure with Mach number accurately; however, the calculations were approximately 25 percent conservative with respect to dynamic pressure

    Effect of particle size, coupling agent and DDGS additions on Paulownia wood polypropylene composites

    Get PDF
    Studies aimed at improving the tensile, flexural, impact, thermal, and physical characteristics of wood–plastic composites composed of Paulownia wood flour derived from 36-month-old trees blended with polypropylene were conducted. Composites of 25% and 40% w/w of Paulownia wood were produced by twin-screw compounding and injection molding. Composites containing 0–10% by weight of maleated polypropylene were evaluated and an optimum maleated polypropylene concentration determined, i.e., 5%. The particle size distribution of Paulownia wood filler is shown to have an effect on the tensile and flexural properties of the composites. Novel combination composites of dried distiller’s grain with solubles mixed with Paulownia wood (up to 40% w/w) were produced and their properties evaluated. Depending on the composite tested, soaking composites for 872 h alters mechanical properties and causes weight gain

    Gramene 2018: unifying comparative genomics and pathway resources for plant research

    Get PDF
    Gramene (http://www.gramene.org) is a knowledgebase for comparative functional analysis in major crops and model plant species. The current release, #54, includes over 1.7 million genes from 44 reference genomes, most of which were organized into 62,367 gene families through orthologous and paralogous gene classification, whole-genome alignments, and synteny. Additional gene annotations include ontology-based protein structure and function; genetic, epigenetic, and phenotypic diversity; and pathway associations. Gramene's Plant Reactome provides a knowledgebase of cellular-level plant pathway networks. Specifically, it uses curated rice reference pathways to derive pathway projections for an additional 66 species based on gene orthology, and facilitates display of gene expression, gene-gene interactions, and user-defined omics data in the context of these pathways. As a community portal, Gramene integrates best-of-class software and infrastructure components including the Ensembl genome browser, Reactome pathway browser, and Expression Atlas widgets, and undergoes periodic data and software upgrades. Via powerful, intuitive search interfaces, users can easily query across various portals and interactively analyze search results by clicking on diverse features such as genomic context, highly augmented gene trees, gene expression anatomograms, associated pathways, and external informatics resources. All data in Gramene are accessible through both visual and programmatic interfaces

    Herniation Pits in Human Mummies: A CT Investigation in the Capuchin Catacombs of Palermo, Sicily

    Get PDF
    Herniation pits (HPs) of the femoral neck were first described in a radiological publication in 1982 as round to oval radiolucencies in the proximal superior quadrant of the femoral neck on anteroposterior radiographs of adults. In following early clinical publications, HPs were generally recognized as an incidental finding. In contrast, in current clinical literature they are mentioned in the context of femoroacetabular impingement (FAI) of the hip joint, which is known to cause osteoarthritis (OA). The significance of HPs in chronic skeletal disorders such as OA is still unclear, but they are discussed as a possible radiological indicator for FAI in a large part of clinical studies

    Replication and active partition of integrative and conjugative elements (ICEs) of the SXT/R391 family : the line between ICEs and conjugative plasmids is getting thinner

    Get PDF
    Integrative and Conjugative Elements (ICEs) of the SXT/R391 family disseminate multidrug resistance among pathogenic Gammaproteobacteria such as Vibrio cholerae. SXT/R391 ICEs are mobile genetic elements that reside in the chromosome of their host and eventually self-transfer to other bacteria by conjugation. Conjugative transfer of SXT/R391 ICEs involves a transient extrachromosomal circular plasmid-like form that is thought to be the substrate for single-stranded DNA translocation to the recipient cell through the mating pore. This plasmid-like form is thought to be non-replicative and is consequently expected to be highly unstable. We report here that the ICE R391 of Providencia rettgeri is impervious to loss upon cell division. We have investigated the genetic determinants contributing to R391 stability. First, we found that a hipAB-like toxin/antitoxin system improves R391 stability as its deletion resulted in a tenfold increase of R391 loss. Because hipAB is not a conserved feature of SXT/R391 ICEs, we sought for alternative and conserved stabilization mechanisms. We found that conjugation itself does not stabilize R391 as deletion of traG, which abolishes conjugative transfer, did not influence the frequency of loss. However, deletion of either the relaxase-encoding gene traI or the origin of transfer (oriT) led to a dramatic increase of R391 loss correlated with a copy number decrease of its plasmid-like form. This observation suggests that replication initiated at oriT by TraI is essential not only for conjugative transfer but also for stabilization of SXT/R391 ICEs. Finally, we uncovered srpMRC, a conserved locus coding for two proteins distantly related to the type II (actin-type ATPase) parMRC partitioning system of plasmid R1. R391 and plasmid stabilization assays demonstrate that srpMRC is active and contributes to reducing R391 loss. While partitioning systems usually stabilizes low-copy plasmids, srpMRC is the first to be reported that stabilizes a family of ICEs

    Recombinase technology: applications and possibilities

    Get PDF
    The use of recombinases for genomic engineering is no longer a new technology. In fact, this technology has entered its third decade since the initial discovery that recombinases function in heterologous systems (Sauer in Mol Cell Biol 7(6):2087–2096, 1987). The random insertion of a transgene into a plant genome by traditional methods generates unpredictable expression patterns. This feature of transgenesis makes screening for functional lines with predictable expression labor intensive and time consuming. Furthermore, an antibiotic resistance gene is often left in the final product and the potential escape of such resistance markers into the environment and their potential consumption raises consumer concern. The use of site-specific recombination technology in plant genome manipulation has been demonstrated to effectively resolve complex transgene insertions to single copy, remove unwanted DNA, and precisely insert DNA into known genomic target sites. Recombinases have also been demonstrated capable of site-specific recombination within non-nuclear targets, such as the plastid genome of tobacco. Here, we review multiple uses of site-specific recombination and their application toward plant genomic engineering. We also provide alternative strategies for the combined use of multiple site-specific recombinase systems for genome engineering to precisely insert transgenes into a pre-determined locus, and removal of unwanted selectable marker genes

    Mouse models of neurodegenerative disease: preclinical imaging and neurovascular component.

    Get PDF
    Neurodegenerative diseases represent great challenges for basic science and clinical medicine because of their prevalence, pathologies, lack of mechanism-based treatments, and impacts on individuals. Translational research might contribute to the study of neurodegenerative diseases. The mouse has become a key model for studying disease mechanisms that might recapitulate in part some aspects of the corresponding human diseases. Neurode- generative disorders are very complicated and multifacto- rial. This has to be taken in account when testing drugs. Most of the drugs screening in mice are very di cult to be interpretated and often useless. Mouse models could be condiderated a ‘pathway models’, rather than as models for the whole complicated construct that makes a human disease. Non-invasive in vivo imaging in mice has gained increasing interest in preclinical research in the last years thanks to the availability of high-resolution single-photon emission computed tomography (SPECT), positron emission tomography (PET), high eld Magnetic resonance, Optical Imaging scanners and of highly speci c contrast agents. Behavioral test are useful tool to characterize di erent ani- mal models of neurodegenerative pathology. Furthermore, many authors have observed vascular pathological features associated to the di erent neurodegenerative disorders. Aim of this review is to focus on the di erent existing animal models of neurodegenerative disorders, describe behavioral tests and preclinical imaging techniques used for diagnose and describe the vascular pathological features associated to these diseases

    Plakophilin-3 Is Required for Late Embryonic Amphibian Development, Exhibiting Roles in Ectodermal and Neural Tissues

    Get PDF
    The p120-catenin family has undergone a significant expansion during the evolution of vertebrates, resulting in varied functions that have yet to be discerned or fully characterized. Likewise, members of the plakophilins, a related catenin subfamily, are found throughout the cell with little known about their functions outside the desmosomal plaque. While the plakophilin-3 (Pkp3) knockout mouse resulted in skin defects, we find larger, including lethal effects following its depletion in Xenopus. Pkp3, unlike some other characterized catenins in amphibians, does not have significant maternal deposits of mRNA. However, during embryogenesis, two Pkp3 protein products whose temporal expression is partially complimentary become expressed. Only the smaller of these products is found in adult Xenopus tissues, with an expression pattern exhibiting distinctions as well as overlaps with those observed in mammalian studies. We determined that Xenopus Pkp3 depletion causes a skin fragility phenotype in keeping with the mouse knockout, but more novel, Xenopus tailbud embryos are hyposensitive to touch even in embryos lacking outward discernable phenotypes, and we additionally resolved disruptions in certain peripheral neural structures, altered establishment and migration of neural crest, and defects in ectodermal multiciliated cells. The use of two distinct morpholinos, as well as rescue approaches, indicated the specificity of these effects. Our results point to the requirement of Pkp3 in amphibian embryogenesis, with functional roles in a number of tissue types

    Reprint of: Minimizing noise in pediatric task-based functional MRI; Adolescents with developmental disabilities and typical development

    Full text link
    Functional Magnetic Resonance Imaging (fMRI) represents a powerful tool with which to examine brain functioning and development in typically developing pediatric groups as well as children and adolescents with clinical disorders. However, fMRI data can be highly susceptible to misinterpretation due to the effects of excessive levels of noise, often related to head motion. Imaging children, especially with developmental disorders, requires extra considerations related to hyperactivity, anxiety and the ability to perform and maintain attention to the fMRI paradigm. We discuss a number of methods that can be employed to minimize noise, in particular movement-related noise. To this end we focus on strategies prior to, during and following the data acquisition phase employed primarily within our own laboratory. We discuss the impact of factors such as experimental design, screening of potential participants and pre-scan training on head motion in our adolescents with developmental disorders and typical development. We make some suggestions that may minimize noise during data acquisition itself and finally we briefly discuss some current processing techniques that may help to identify and remove noise in the data. Many advances have been made in the field of pediatric imaging, particularly with regard to research involving children with developmental disorders. Mindfulness of issues such as those discussed here will ensure continued progress and greater consistency across studies
    corecore