78,150 research outputs found

    Nucleon mass and pion loops: Renormalization

    Get PDF
    Using Dyson--Schwinger equations, the nucleon propagator is analyzed nonperturbatively in a field--theoretical model for the pion--nucleon interaction. Infinities are circumvented by using pion--nucleon form factors which define the physical scale. It is shown that the correct, finite, on--shell nucleon renormalization is important for the value of the mass--shift and the propagator. For physically acceptable forms of the pion--nucleon form factor the rainbow approximation together with renormalization is inconsistent. Going beyond the rainbow approximation, the full pion--nucleon vertex is modelled by its bare part plus a one--loop correction including an effective Δ\Delta. It is found that a consistent value for the nucleon mass--shift can be obtained as a consequence of a subtle interplay between wave function and vertex renormalization. Furthermore, the bare and renormalized pion--nucleon coupling constant are approximately equal, consistent with results from the Cloudy Bag Model.Comment: 14 pages, 6 figure

    The role of the N*(1535) resonance and the pi^- p --> KY amplitudes in the OZI forbidden pi N --> phi N reaction

    Get PDF
    We study the pi N --> phi N reaction close to the phi N threshold within the chiral unitary approach, by combining the pi^- p --> K^+ Sigma^-, pi^- p --> K^0 Sigma^0 and pi^- p --> K^0 Lambda amplitudes with the coupling of the phi to the K components of the final states of these reactions via quantum loops. We obtain a good agreement with experiment when the dominant pi^- p --> K^0 Lambda amplitude is constrained with its experimental cross section. We also evaluate the coupling of the N*(1535) to phi N and find a moderate coupling as a consequence of partial cancellation of the large KY components of the N*(1535). We also show that the N*(1535) pole approximation is too small to reproduce the measured cross section for the pi N --> phi N reaction.Comment: 10 pages, 6 figure

    Coexpression of rat P2X2 and P2X6 subunits in Xenopus oocytes.

    Get PDF
    Transcripts for P2X(2) and P2X(6) subunits are present in rat CNS and frequently colocalize in the same brainstem nuclei. When rat P2X(2) (rP2X(2)) and rat P2X(6) (rP2X(6)) receptors were expressed individually in Xenopus oocytes and studied under voltage-clamp conditions, only homomeric rP2X(2) receptors were fully functional and gave rise to large inward currents (2-3 microA) to extracellular ATP. Coexpression of rP2X(2) and rP2X(6) subunits in Xenopus oocytes resulted in a heteromeric rP2X(2/6) receptor, which showed a significantly different phenotype from the wild-type rP2X(2) receptor. Differences included reduction in agonist potencies and, in some cases (e.g., Ap(4)A), significant loss of agonist activity. ATP-evoked inward currents were biphasic at the heteromeric rP2X(2/6) receptor, particularly when Zn(2+) ions were present or extracellular pH was lowered. The pH range was narrower for H(+) enhancement of ATP responses at the heteromeric rP2X(2/6) receptor. Also, H(+) ions inhibited ATP responses at low pH levels (<pH 6.3). The pH-dependent blocking activity of suramin was changed at this heteromeric receptor, although the potentiating effect of Zn(2+) on ATP responses was unchanged. Thus, the rP2X(2/6) receptor is a functionally modified P2X(2)-like receptor with a distinct pattern of pH modulation of ATP activation and suramin blockade. Although homomeric P2X(6) receptors function poorly, the P2X(6) subunit can contribute to functional heteromeric P2X channels and may influence the phenotype of native P2X receptors in those cells in which it is expressed

    Determining the influence and effects of manufacturing variables on sulfur dioxide cells

    Get PDF
    A survey of the Li/SO2 manufacturing community was conducted to determine where variability exists in processing. The upper and lower limits of these processing variables might, by themselves or by interacting with other variables, influence safety, performance, and reliability. A number of important variables were identified and a comprehensive design experiment is being proposed to make the proper determinations

    A Lattice QCD Analysis of the Strangeness Magnetic Moment of the Nucleon

    Get PDF
    The outcome of the SAMPLE Experiment suggests that the strange-quark contribution to the nucleon magnetic moment, G_M^s(0), may be greater than zero. This result is very difficult to reconcile with expectations based on the successful baryon magnetic-moment phenomenology of the constituent quark model. We show that careful consideration of chiral symmetry reveals some rather unexpected properties of QCD. In particular, it is found that the valence u-quark contribution to the magnetic moment of the neutron can differ by more than 50% from its contribution to the Xi^0 magnetic moment. This hitherto unforeseen result leads to the value G_M^s(0) = -0.16 +/- 0.18 with a systematic error, arising from the relatively large strange quark mass used in existing lattice calculations, that would tend to shift G_M^s(0) towards small positive values.Comment: RevTeX, 20 pages, 12 figure

    Pluricomplex Green and Lempert functions for equally weighted poles

    Full text link
    For Ω\Omega a domain in Cn\mathbb C^n, the pluricomplex Green function with poles a1,...,aNΩa_1, ...,a_N \in \Omega is defined as G(z):=sup{u(z):uPSH(Ω),u(x)logxaj+Cjwhenxaj,j=1,...,N}G(z):=\sup \{u(z): u\in PSH_-(\Omega), u(x)\le \log \|x-a_j\|+C_j \text{when} x \to a_j, j=1,...,N \}. When there is only one pole, or two poles in the unit ball, it turns out to be equal to the Lempert function defined from analytic disks into Ω\Omega by LS(z):=inf{j=1Nνjlogζj:ϕO(D,Ω),ϕ(0)=z,ϕ(ζj)=aj,j=1,...,N}L_S (z) :=\inf \{\sum^N_{j=1}\nu_j\log|\zeta_j|: \exists \phi\in \mathcal {O}(\mathbb D,\Omega), \phi(0)=z, \phi(\zeta_j)=a_j, j=1,...,N \}. It is known that we always have LS(z)GS(z)L_S (z) \ge G_S(z). In the more general case where we allow weighted poles, there is a counterexample to equality due to Carlehed and Wiegerinck, with Ω\Omega equal to the bidisk. Here we exhibit a counterexample using only four distinct equally weighted poles in the bidisk. In order to do so, we first define a more general notion of Lempert function "with multiplicities", analogous to the generalized Green functions of Lelong and Rashkovskii, then we show how in some examples this can be realized as a limit of regular Lempert functions when the poles tend to each other. Finally, from an example where LS(z)>GS(z)L_S (z) > G_S(z) in the case of multiple poles, we deduce that distinct (but close enough) equally weighted poles will provide an example of the same inequality. Open questions are pointed out about the limits of Green and Lempert functions when poles tend to each other.Comment: 25 page

    Zero Modes in Electromagnetic Form Factors of the Nucleon in a Light-Cone Diquark Model

    Full text link
    We use a diquark model of the nucleon to calculate the electromagnetic form factors of the nucleon described as a scalar and axialvector diquark bound state. We provide an analysis of the zero-mode contribution in the diquark model. We find there are zero-mode contributions to the form factors arising from the instantaneous part of the quark propagator, which cannot be neglected compared with the valence contribution but can be removed by the choice of wave function. We also find that the charge and magnetic radii and magnetic moment of the proton can be reproduced, while the magnetic moment of the neutron is too small. The dipole shape of the form factors, GMp(Q2)/μpG^p_M(Q^2)/\mu_p and GMn(Q2)/μn,G^n_M(Q^2)/\mu_n, can be reproduced. The ratio μGEp/GMp\mu G^p_E/G^p_M decreases with Q2,Q^2, but too fast.Comment: 22 pages, 6 pages, accepted by J.Phys.

    ExploreNEOs. II. The Accuracy of the Warm Spitzer Near-Earth Object Survey

    Get PDF
    We report on results of observations of near-Earth objects (NEOs) performed with the NASA Spitzer Space Telescope as part of our ongoing (2009-2011) Warm Spitzer NEO survey ("ExploreNEOs"), the primary aim of which is to provide sizes and albedos of some 700 NEOs. The emphasis of the work described here is an assessment of the overall accuracy of our survey results, which are based on a semi-empirical generalized model of asteroid thermal emission. The NASA Spitzer Space Telescope has been operated in the so-called Warm Spitzer mission phase since the cryogen was depleted in 2009 May, with the two shortest-wavelength channels, centered at 3.6 μm and 4.5 μm, of the Infrared Array Camera continuing to provide valuable data. The set of some 170 NEOs in our current Warm Spitzer results catalog contains 28 for which published taxonomic classifications are available, and 14 for which relatively reliable published diameters and albedos are available. A comparison of the Warm Spitzer results with previously published results ("ground truth"), complemented by a Monte Carlo error analysis, indicates that the rms Warm Spitzer diameter and albedo errors are ±20% and ±50%, respectively. Cases in which agreement with results from the literature is worse than expected are highlighted and discussed; these include the potential spacecraft target 138911 2001 AE_2. We confirm that 1.4 appears to be an appropriate overall default value for the relative reflectance between the V band and the Warm Spitzer wavelengths, for use in correction of the Warm Spitzer fluxes for reflected solar radiation

    Continuous extrusion of a commercially pure titanium powder via the Conform process

    Get PDF
    It is shown for the first time that cold commercially pure titanium powder can be extruded through a standard Conform machine into fully dense wire with a fine recrystallised microstructure. The grain size has been shown to decrease with increasing wheel speed with an associated increase in tensile strength. The macrostructure of the wire extrudate exhibits a characteristic flow pattern with several regions defined by differences in average grain size and distribution. Finite-element modelling of the process shows the formation of the characteristic macrostructure from powder fed Conform. The process is continuous, utilises standard equipment and does not require powder preheating or inert gas shrouding providing a footing for a true cost reduction in longsection titanium mill product
    corecore