2,273 research outputs found

    IST Austria Technical Report

    Get PDF
    Boolean notions of correctness are formalized by preorders on systems. Quantitative measures of correctness can be formalized by real-valued distance functions between systems, where the distance between implementation and specification provides a measure of “fit” or “desirability.” We extend the simulation preorder to the quantitative setting, by making each player of a simulation game pay a certain price for her choices. We use the resulting games with quantitative objectives to define three different simulation distances. The correctness distance measures how much the specification must be changed in order to be satisfied by the implementation. The coverage distance measures how much the im- plementation restricts the degrees of freedom offered by the specification. The robustness distance measures how much a system can deviate from the implementation description without violating the specification. We consider these distances for safety as well as liveness specifications. The distances can be computed in polynomial time for safety specifications, and for liveness specifications given by weak fairness constraints. We show that the distance functions satisfy the triangle inequality, that the distance between two systems does not increase under parallel composition with a third system, and that the distance between two systems can be bounded from above and below by distances between abstractions of the two systems. These properties suggest that our simulation distances provide an appropriate basis for a quantitative theory of discrete systems. We also demonstrate how the robustness distance can be used to measure how many transmission errors are tolerated by error correcting codes

    LNCS

    Get PDF
    Boolean notions of correctness are formalized by preorders on systems. Quantitative measures of correctness can be formalized by real-valued distance functions between systems, where the distance between implementation and specification provides a measure of “fit” or “desirability.” We extend the simulation preorder to the quantitative setting, by making each player of a simulation game pay a certain price for her choices. We use the resulting games with quantitative objectives to define three different simulation distances. The correctness distance measures how much the specification must be changed in order to be satisfied by the implementation. The coverage distance measures how much the implementation restricts the degrees of freedom offered by the specification. The robustness distance measures how much a system can deviate from the implementation description without violating the specification. We consider these distances for safety as well as liveness specifications. The distances can be computed in polynomial time for safety specifications, and for liveness specifications given by weak fairness constraints. We show that the distance functions satisfy the triangle inequality, that the distance between two systems does not increase under parallel composition with a third system, and that the distance between two systems can be bounded from above and below by distances between abstractions of the two systems. These properties suggest that our simulation distances provide an appropriate basis for a quantitative theory of discrete systems. We also demonstrate how the robustness distance can be used to measure how many transmission errors are tolerated by error correcting codes

    Aging in two-dimensional Bouchaud's model

    Get PDF
    Let E_x be a collection of i.i.d. exponential random variables. Symmetric Bouchaud's model on Z^2 is a Markov chain X(t) whose transition rates are given by w_xy=\nu \exp(-\beta E_x) if x, y are neighbours in Z^2. We study the behaviour of two correlation functions: P[X(t_w+t)=X(t_w)] and P[X(t')=X(t_w)\forall t'\in[t_w,t_w+t]]. We prove the (sub)aging behaviour of these functions when \beta >1

    Patient Preference Studies for Advanced Prostate Cancer Treatment Along the Medical Product Life Cycle: Systematic Literature Review

    Full text link
    Background: Patient preference studies can inform decision-making across all stages of the medical product life cycle (MPLC). The treatment landscape for advanced prostate cancer (APC) treatment has substantially changed in recent years. However, the most patient-relevant aspects of APC treatment remain unclear. This systematic review of patient preference studies in APC aimed to summarize the evidence on patient preferences and patient-relevant aspects of APC treatments, and to evaluate the potential contribution of existing studies to decision-making within the respective stages of the MPLC. Methods: We searched MEDLINE and EMBASE for studies evaluating patient preferences related to APC treatment up to October 2020. Two reviewers independently performed screening, data extraction and quality assessment in duplicate. We descriptively summarized the findings and analyzed the studies regarding their contribution within the MPLC using an analytical framework. Results: Seven quantitative preference studies were included. One study each was conducted in the marketing approval and the health technology assessment (HTA) and reimbursement stage, and five were conducted in the post-marketing stage of the MPLC. While almost all stated to inform clinical practice, the specific contributions to clinical decision-making remained unclear for almost all studies. Evaluated attributes related to benefits, harms, and other treatment-related aspects and their relative importance varied relevantly between studies. All studies were judged of high quality overall, but some methodological issues regarding sample selection and the definition of patient-relevant treatment attributes were identified. Conclusion: The most patient-relevant aspects regarding the benefits and harms of APC treatment are not yet established, and it remains unclear which APC treatments are preferred by patients. Findings from this study highlight the importance of transparent reporting and discussion of study findings according to their aims and with respect to their stage within the MPLC. Future research may benefit from using the MPLC framework for analyzing or determining the aims and design of patient preference studies. Keywords: benefit-harm assessment; medical product life cycle; patient preferences; patient-centered care; preference research; prostate cancer; systematic revie

    Population-based SEER trend analysis of overall and cancer-specific survival in 5138 patients with gastrointestinal stromal tumor

    Get PDF
    Background: The objective of the present population-based analysis was to assess survival patterns in patients with resected and metastatic GIST. Methods: Patients with histologically proven GIST were extracted from the Surveillance, Epidemiology and End Results (SEER) database from 1998 through 2011. Survival was determined applying Kaplan-Meier-estimates and multivariable Cox-regression analyses. The impact of size and mitotic count on survival was assessed with a generalized receiver-operating characteristic-analysis. Results: Overall, 5138 patients were included. Median age was 62 years (range: 18–101 years), 47.3% were female, 68.8% Caucasians. GIST location was in the stomach in 58.7% and small bowel in 31.2%. Lymph node and distant metastases were found in 5.1 and 18.0%, respectively. For non-metastatic GIST, three-year overall survival increased from 68.5% (95% CI: 58.8–79.8%) in 1998 to 88.6% (95% CI: 85.3–92.0%) in 2008, cancer-specific survival from 75.3% (95% CI: 66.1–85.9%) in 1998 to 92.2% (95% CI: 89.4–95.1%) in 2008. For metastatic GIST, three-year overall survival increased from 15.0% (95% CI: 5.3–42.6%) in 1998 to 54.7% (95% CI: 44.4–67.3%) in 2008, cancer-specific survival from 15.0% (95% CI: 5.3–42.6%) in 1998 to 61.9% (95% CI: 51.4–74.5%) in 2008 (all PTrend < 0.05). Conclusions: This is the first SEER trend analysis assessing outcomes in a large cohort of GIST patients over a 11-year time period. The analysis provides compelling evidence of a statistically significant and clinically relevant increase in overall and cancer-specific survival from 1998 to 2008, both for resected as well as metastatic GIST

    IST Austria Technical Report

    Get PDF
    We present an algorithmic method for the synthesis of concurrent programs that are optimal with respect to quantitative performance measures. The input consists of a sequential sketch, that is, a program that does not contain synchronization constructs, and of a parametric performance model that assigns costs to actions such as locking, context switching, and idling. The quantitative synthesis problem is to automatically introduce synchronization constructs into the sequential sketch so that both correctness is guaranteed and worst-case (or average-case) performance is optimized. Correctness is formalized as race freedom or linearizability. We show that for worst-case performance, the problem can be modeled as a 2-player graph game with quantitative (limit-average) objectives, and for average-case performance, as a 2 1/2 -player graph game (with probabilistic transitions). In both cases, the optimal correct program is derived from an optimal strategy in the corresponding quantitative game. We prove that the respective game problems are computationally expensive (NP-complete), and present several techniques that overcome the theoretical difficulty in cases of concurrent programs of practical interest. We have implemented a prototype tool and used it for the automatic syn- thesis of programs that access a concurrent list. For certain parameter val- ues, our method automatically synthesizes various classical synchronization schemes for implementing a concurrent list, such as fine-grained locking or a lazy algorithm. For other parameter values, a new, hybrid synchronization style is synthesized, which uses both the lazy approach and coarse-grained locks (instead of standard fine-grained locks). The trade-off occurs because while fine-grained locking tends to decrease the cost that is due to waiting for locks, it increases cache size requirements

    Evidence for the prepattern/cooption model of vertebrate jaw evolution

    Get PDF
    The appearance of jaws was a turning point in vertebrate evolution because it allowed primitive vertebrates to capture and process large, motile prey. The vertebrate jaw consists of separate dorsal and ventral skeletal elements connected by a joint. How this structure evolved from the unjointed gill bar of a jawless ancestor is an unresolved question in vertebrate evolution. To understand the developmental bases of this evolutionary transition, we examined the expression of 12 genes involved in vertebrate pharyngeal patterning in the modern jawless fish lamprey. We find nested expression of Dlx genes, as well as combinatorial expression of Msx, Hand and Gsc genes along the dorso-ventral (DV) axis of the lamprey pharynx, indicating gnathostome-type pharyngeal patterning evolved before the appearance of the jaw. In addition, we find that Bapx and Gdf5/6/7, key regulators of joint formation in gnathostomes, are not expressed in the lamprey first arch, whereas Barx, which is absent from the intermediate first arch in gnathostomes, marks this domain in lamprey. Taken together, these data support a new scenario for jaw evolution in which incorporation of Bapx and Gdf5/6/7 into a preexisting DV patterning program drove the evolution of the jaw by altering the identity of intermediate first-arch chondrocytes. We present this “Pre-pattern/Cooption” model as an alternative to current models linking the evolution of the jaw to the de novo appearance of sophisticated pharyngeal DV patterning

    LNCS

    Get PDF
    We present an algorithmic method for the quantitative, performance-aware synthesis of concurrent programs. The input consists of a nondeterministic partial program and of a parametric performance model. The nondeterminism allows the programmer to omit which (if any) synchronization construct is used at a particular program location. The performance model, specified as a weighted automaton, can capture system architectures by assigning different costs to actions such as locking, context switching, and memory and cache accesses. The quantitative synthesis problem is to automatically resolve the nondeterminism of the partial program so that both correctness is guaranteed and performance is optimal. As is standard for shared memory concurrency, correctness is formalized &quot;specification free&quot;, in particular as race freedom or deadlock freedom. For worst-case (average-case) performance, we show that the problem can be reduced to 2-player graph games (with probabilistic transitions) with quantitative objectives. While we show, using game-theoretic methods, that the synthesis problem is Nexp-complete, we present an algorithmic method and an implementation that works efficiently for concurrent programs and performance models of practical interest. We have implemented a prototype tool and used it to synthesize finite-state concurrent programs that exhibit different programming patterns, for several performance models representing different architectures

    Dipeptidylpeptidase IV (CD26) defines leukemic stem cells (LSC) in chronic myeloid leukemia

    Get PDF
    Chronic myeloid leukemia (CML) is a stem cell (SC) neoplasm characterized by the BCR/ABL1 oncogene. Although mechanisms of BCR/ABL1-induced transformation are well-defined, little is known about effector-molecules contributing to malignant expansion and the extramedullary spread of leukemic SC (LSC) in CML. We have identified the cytokine-targeting surface enzyme dipeptidylpeptidase-IV (DPPIV/CD26) as a novel, specific and pathogenetically relevant biomarker of CD34+/CD38─ CML LSC. In functional assays, CD26 was identified as target enzyme disrupting the SDF-1-CXCR4-axis by cleaving SDF-1, a chemotaxin recruiting CXCR4+ SC. CD26 was not detected on normal SC or LSC in other hematopoietic malignancies. Correspondingly, CD26+ LSC decreased to low or undetectable levels during successful treatment with imatinib. CD26+ CML LSC engrafted NOD-SCID-IL-2Rγ−/− (NSG) mice with BCR/ABL1+ cells, whereas CD26─ SC from the same patients produced multilineage BCR/ABL1– engraftment. Finally, targeting of CD26 by gliptins suppressed the expansion of BCR/ABL1+ cells. Together, CD26 is a new biomarker and target of CML LSC. CD26 expression may explain the abnormal extramedullary spread of CML LSC, and inhibition of CD26 may revert abnormal LSC function and support curative treatment approaches in this malignancy
    corecore