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Abstract. Let Ex be a collection of i.i.d. exponential randomvariables. Symmetric Bouchaud's model on Z2 is a Markov chainX(t) whose transition rates are given by wxy = � exp(��Ex) if x,y are neighbours in Z2. We study the behaviour of two correla-tion functions: P[X(tw + t) = X(tw)] and P�X(t0) = X(tw)8t0 2[tw; tw+ t]�. We prove the (sub)aging behaviour of these functionswhen � > 1. 1. IntroductionWe explore in this paper a mechanism for aging of Markovian dy-namics in complex random media proposed by J. P.Bouchaud. Thismechanism is based on trapping. More precisely if a Markov processmoves in a very complex landscape of energy, it should spend most ofits time in the deep valleys of this landscape; its long time behaviourshould be essentially ruled by three features: the (short) transits be-tween these valleys, the relative positions of these valleys, and the(long) exit times from these valleys (which are usually exponentiallydistributed with parameters proportional to the (random) depth of thevalley). Aging would then simply be the consequence of the followingmechanism: the older the system is the more space it has explored, thedeeper valley it is stuck in. So that the process essentially stays putfor longer and longer periods of time.In order to capture the core of this appealing picture, Bouchaudproposed a very simple e�ective model of trapping on a graph. Let usdescribe it here. Let G = (V; E) be a connected graph. The vertices ofG should be seen as valleys and the graph structure as the descriptionof the communication between these valleys. The random landscapeis now given by a collection of i.i.d. random variables E = fExgx2V,exponentially distributed with mean 1. Ex should be seen as the depthof the valley at x. We consider a random \Gibbs" measure � on Vwith mass of vertex x given by�x = e�Ex; (1)where � > 0 is the inverse temperature. We de�ne Bouchaud's trapmodel as a continuous time Markov chain X(t) on V by the jump rateswxy = � exp �� �((1� a)Ex � aEy)� if x � y, (2)and zero otherwise. The constant � �xes only the time scale and willbe �xed later, and a 2 [0; 1] tunes the inuence of neighbouring valleyson jumping rates. The simplest case is a = 0, then it is clear that the1



2Markov chain X is a random time change of the simple random walkon the graph. Notice that the random measure � is reversible for allvalues of a and �.This model has been introduced in the physics literature (see [Bou92,MB96, BM97]) on a large complete graph initially as an ansatz for thedynamics of the Random Energy Model (see [BBG03a, BBG03b] for arigorous study). It was then considered on the graph Zd in [RMB00]and �rst time rigorously studied by [FIN02] for d = 1 and a = 0, thenby [B�C02] for d = 1 and general a. We study here Bouchaud's trapmodel on the lattice Z2 in a = 0 case. This case has been sketched in[RMB00] with a concept of partial equilibrium which is rather diÆcultto justify. For convenience we will choose � = 1=(2d) = 1=4.Let us state our aging result. We consider the following two-pointfunction: R(tw; tw + t) = P[X(tw + t) = X(tw)jE]; (3)which is the probability that the process is at the same site at timetw + t as it was at time tw. We prove the aging behaviour for thefunction R.Theorem 1.1. For all � > 1 and a = 0 there exists a function R(�)such that for P-a.e. realisation of the environment Elimtw!1R(tw; tw + �tw) = R(�): (4)Moreover, the function R(�) can be explicitly calculated (see Proposi-tion 7.1) and it satis�eslim�!0R(�) = 1 and lim�!1R(�) = 0: (5)We further study the following two-point function:�(tw; tw + t) = P[X(t0) = X(tw)8t0 2 [tw; tw + t]jE]; (6)which is the probability that the process does not jump between thetimes tw and t + tw. We show sub-aging behaviour for this two-pointfunction.Theorem 1.2. For all � > 1 and a = 0 there exists a function �(�)such that for P-a.e. realisation of the environment Elimtw!1��tw; tw + � twlog tw� = �(�): (7)The function �(�) can be again made explicit (see Proposition 8.2) andit satis�es the same relations (5) as R(�).Remarks: 1. Our results stay valid if we replace the conditionthat Ex is exponentially distributed with mean 1 by weaker conditionP[�x > 0] = 1 and limu!1 u�P(�0 � u) = K with � 2 (0; 1);(8)



3and K 2 (0;1). This condition is easy to verify for the original distri-bution with � = 1=�, K = 1. For the rest of the paper the condition(8) is in force, we also assume for simplicity that K = 1. The limitingfunctions R(�) and �(�) do not depend on the choice of distribution of�x verifying these conditions.2. Unlike as in d = 1 case [FIN02, B�C02] we study here the so calledquenched two-point functions, that means that we obtain (sub)agingfor a.e. environment. The averaged results are an easy consequenceof our theorems. To complete the picture, we recall the results of[FIN02, B�C02]. It was proved that averaged two-point functions satisfylimtw!1 ER(tw ; tw + �tw) = R1(�)limtw!1 E�(tw ; tw + �t(1�a)=(1+�)w ) = �1;a(�): (9)Note also that in d = 1 the analogous quenched results are not valid.3. The d � 3, a = 0 case is treated in [�Cer03]. Very similar re-sults are obtained there. Theorem 1.1 stays valid without any change,even the function R(�) is the same. Theorem 1.2 should be modi�edslightly. For the two-point function � the same type of limit as for Rshould be considered, to reect the fact that the simple random walkin d � 3 visits any site only �nitely many times. It was shown therelimtw!1�(tw; tw + �tw) exists.4. The case d = 2, a > 0 is much harder and will be treated else-where. In this case Bouchaud's trap model is not longer time changeof the simple random walk but some type of reversible random walk inrandom environment.5. The choice � = 1=4 assures, that the mean waiting time of X atsite x is equal to �x. Therefore, the process X(t) stays at the site x anexponentially distributed time with mean �x and then it jumps with theequal probability to one of the four neighbouring sites. Formally, letXd(i), i = 0; 1; : : : , denote a discrete time simple random walk on Z2started at origin, and let ei be a collection of i.i.d. exponential randomvariables with mean one. We use S(n) to denote the \time change" ofthe simple random walk S(n) = n�1Xi=0 ei�Xd(i): (10)Then X(t) = Xd(j) if S(j) � t < S(j+1). Since the random variables�x and Ex are directly related by (1) we abuse terminology slightly, andcall �x also depth of the trap at x. Actually, we do not use Ex later inthis paper and the word \depth" refers always to � .The results of both theorems can be described heuristically in thefollowing way. After time tw the system is typically in a trap whosemean waiting time is of order tw= log tw (as can be seen from Theo-rem 1.2). After passing a time of that order in the trap the process X



4makes excursions from it and returns there of order log tw times beforetime (1 + �)tw. Then X leaves the neighbourhood of this trap andcontinues to explore the lattice.We describe here the strategy that will be used to prove both thetheorems. Let n 2 N. We consider the process X(t) only before theexit from the disk D (n) with the area m2nn1�� around the origin.The constant m will be chosen later in order that the walk can staya suÆciently long time inside D (n). We are interested mainly in thetime that the walk spends in traps that are deeper than "2n=�=n, for" � 1 to be �xed later (such traps will be referred to as deep traps).In the disk D (n) there are approximately mn=�� such traps. Since theprobability of hitting a particular point in D (n), that is suÆciently farfrom the walk initial point, before the exit from D (n) is of order n�1,the walk has a reasonable chance to hit at least one deep trap. Theconstant " will be chosen small enough to ensure that the walk spendsa negligible proportion of time in shallower traps.We cut the trajectory of the process X into short parts. Every part is�nished when X exits for the �rst time the disk of area 2nn around theinitial point of the part. At this moment a new part is started. Clearly,we should take  < 1��. For every such part we look at the time thatthe walk spends in the traps which we have speci�ed in the previousparagraph. It will be proved that, with overwhelming probability, thewalk hits at most one such trap in every part. Moreover, the sametrap is almost never hit again in the next parts before the exit fromD (n). To the i-th part of the trajectory we associate a random variablesi that we call score of that part, and that is roughly the time spentby X in the deep trap that was hit during this part (the score will bede�ned in Section 2). It will be proved that for n suÆciently large therandom variables si are essentially independent and the well rescaledtrajectory of the sum P si converges to a pure jump, increasing L�evyprocess. It will be also shown that this sum is a good approximationfor the well rescaled time change S(n).The proof of both theorems relies on the fact that the events that weare interested in, that is the probabilities of staying a long time at thesame place, mainly occur if well rescaled values of times tw and t+ twfalls into one jump of the L�evy process from the previous paragraph, ormore precisely if the intersection of the range of the L�evy process withthe rescaled interval [tw; t+ tw] is empty. Probability of such an eventis easy to calculate using arcsine law for L�evy processes (see [Ber96]).The theorems are proved in Sections 7 and 8 where the reader canalso �nd the explicit expressions for functionsR(�) and �(�). The proofof the convergence of well rescaled sums of scores occupies Sections 2{6.Throughout the paper we will deal with typically non integer objectssuch as pn2n or 2nn for discrete valued processes. In these contextsit is to be understood that the quantity referred to is the integer part.



52. The coarse-graining of X(t)We introduce some notations needed later. We use Dx(m), andBx(m) to denote the disk, resp. the box, with area m around the sitex. If x is omitted the disk (box) is centred around the origin. Boththese objects are understood as subsets of Z2. In the following we willvery often use the claim that the disk D(m) contains m sites from Z2,although it is not precisely true. Precisely D(m) will be the disc ofradius r, where r is the in�mum of the radii of discs centred at theorigin containing at least m lattice points. Any error we introduce bythis consideration will be negligible for m large enough.Let n 2 N large. We consider the process X(t) before the �rst exitfrom the disk D (n) � D(m2nn1��). We write�d(n) = inffi 2 N : Xd(i) =2 D (n)g;�(n) = infft 2 R : X(t) =2 D (n)g (11)for the exit times of discrete, resp. continuous, time process from D (n).We will often skip the dependence on n in our notation.We use TM" (n) to denote the setTM" (n) = nx 2 D (n) : "2n=�n � �x < M2n=�n o: (12)If M or " are omitted, it is understood M = 1, resp. " = 0. Theconstants " and M will be chosen later. However, we always supposethat "� 1� M . We call the traps from T " shallow traps, TM" is theset of deep traps, and TM is the set of very deep traps. We will showthat as M becomes large the probability of hitting a point in TM beforetime of order 2n=� (which is the time that X typically spends in D (n))will be negligible, while as " becomes small the amount of time spentby process X before time of order 2n=� in sites of T " will be very small.We write E(n) for the set of sites that are suÆciently far from theset TM" (n), E(n) = D (n) n [y2TM" (n)Dy(2nn��): (13)The constant � = �(�) can be taken arbitrarily large, but will be �xedwhile n ! 1. The value � = 5=(1 � �) is suÆcient for our purposes.The role of the set E(n) will be clari�ed later.Further, we introduce a function L(u) satisfyingP[�0 � u] = u��L(u): (14)From (8) we know that limu!1 L(u) = 1. It is also not diÆcult to seethat L is bounded.We write �(A) for the indicator function of the set A. We use theletters C, c to denote positive constants that have no particular impor-tance. The value of these constants can change during computations.



6On the other hand, the letterK is reserved for constants with particularmeaning.We de�ne now the coarse-graining of the trajectory of the process X.Let  < 1� �. We set jn0 = 0, and then we de�ne recursivelyjni = minfk > jni�1 : Xd(k) =2 DXd(jni�1)(2nn)g; (15)with the convention that the minimumof an empty set is equal to in�n-ity. We use xni to denote the starting points of the parts of trajectory,xni = Xd(jni ). The range of Xd between the times j and k is denotedby Xd[j; k), i.e. Xd[j; k) = fXd(l) : j � l < kg.We will now de�ne the score sni of the part Xd[jni ; jni+1). Let �1 bethe �rst time when Xd hits a deep trap after the start of this part,�1 = minfk � jni : Xd(k) 2 TM" g: (16)Let y = Xd(�1) be the �rst visited deep trap after time jni . Further,let �2 be the exit time from the disk Dy(2nn��),�2 = minfk > �1 : Xd(k) =2 Dy(2nn��)g: (17)The last time that we need is�3 = min��k > �1 : Xd(k) 2 TM" ny	[fk � �2 : Xd(k) 2 TM" g�: (18)It is the �rst time after �1 when Xd hits a deep trap, but we do notconsider the successive hits of the trap y before the time �2, so it ispossible that Xd(�3) = yIf �1 < �2 � jni+1 � �3, jni+1 � �d, and y is farther than p��12nn��from the border of Dxni (2nn), we de�ne the score associated with in-terval [jni ; jni+1) by sni = �2Xk=�1 ek�y�(Xd(k) = y): (19)The last condition assures that the movement of X inside Dy(2nn��) isnot inuenced by the border of Dxni (2nn). If �1 � jni+1 and jni+1 � �d,we set sni = 0. In both previous cases the score is simply the time spentin the �rst visited deep trap. In all other cases we set sni = 1. Thisvalue has no particular meaning, it only marks the parts of trajectorywhere something \unusual" happens. By unusual we mean essentiallythat(a) Xd[jni ; jni+1) contains two deep traps, and so �3 < jni+1,(b) Xd exits D (n) before jni+1, and so �d < jni+1,(c) Xd returns to the �rst deep trap after exiting a disk of area2nn�� around it, i.e. again �3 < jni+1,(d) Disk Dy(2nn��) intersects the complement of Dxni (2nn), i.e. Xhits a deep trap that is too close to the border of Dxni (2nn).



7We will study the behaviour of the trajectory of the processY n(t) = 12n=� btn1���cXi=0 sni : (20)The value of this process becomes in�nite if any of the possibilities fromthe previous paragraph happen. Therefore, we will rede�ne Y n. LetJ1(n) be the index of the �rst part of trajectory where sni is in�nite,J1(n) = minfi : sni = 1g. For technical reasons we introduce anotherthree bad events. LetJ2(n) = minfi : xni+1 =2 E(n)g; (21)that means that the end of the J2-th part of the trajectory is too closeto some deep trap. The reason why we introduce this time is that whena part of the trajectory starts too close to some deep trap, the chanceof hitting this trap is large, and thus the value of the score is stronglyinuenced by the mean waiting time of this trap.For similar reasons we introduceJ3(n) = min�i : dist(xni ; D (n)c) � p��12nn	; (22)i.e. the J3-th part is the �rst part that starts too close to the border ofD (n) and X can therefore exit from the large disk during it.Further, letJ4(n) = minfi : Xd[0; jni ) \ TM" \Xd[jni ; jni+1) 6= ;g; (23)which means that Xd returns during part J4 to some deep trap visitedin previous parts of the trajectory. Let J(n) = minfJ1(n); : : : ; J4(n)g.The value of J is the index of the �rst part of the trajectory where atleast one of the following bad events happens(i) Xd visits two di�erent deep traps(ii) Xd can exit D (n)(iii) Xd returns to some deep trap y (possibly visited in previousparts) after exiting Dy(2nn��)(iv) the end of this part of trajectory is too close (in the sense of(21)) to some deep trap.(v) Xd hits a deep trap that is too close to the border of Dxni (2nn).Note that (iii) includes (c) from the previous list, (ii) contains (b), and(i), (v) is same as (a), (d).Let now ~sni be a suitably chosen collection of i.i.d. random variableswhose distribution will be de�ned later (see proof of Proposition 7.1).We set �sni = (sni if i < J(n),~sni otherwise. (24)



8We rede�ne the process Y n byY n(t) = 12n=� btn1���cXi=0 �sni : (25)We want to compare this process with the well rescaled time changeS(n), namely with �Sn(t) = 12n=�S(jnbtn1���c): (26)To this end we should control several quantities. First, we shouldestimate the time spent in the shallow traps, that is in T " (Section 3).Second, we need to control the probability that Xd hits TM before �,because we did not include the very deep traps into the de�nition ofthe score (Section 4). Finally, we need to be sure that the value of J islarge enough, otherwise the process Y n has no relevance for our model(Section 5).If all these condition are satis�ed, that means that Y n is a goodapproximation of �Sn at least at the start of the trajectory, we shouldstudy the behaviour of the sequence Y n. We will show that it convergesto a certain L�evy process (Section 6).3. The shallow trapsAs we already noted in the previous section, we want to show thatthe proportion of time that X spends in the shallow traps is negligible.It will be shown later that the time that X needs to leave disk D (n) isof order 2n=�. We thus need to prove that the time spent in T " can bemade arbitrarily small with respect to 2n=�. This is the result of thefollowing lemma, whose proof occupies the rest of this section.Lemma 3.1. There exists K1 = K1(m) independent of " such that forP-a.e. random environment � and for n large enoughEh �d�1Xi=0 ei�Xd(i)�fXd(i) 2 T "g����i � K1"1��2n=�: (27)Recall that �d is the �rst time that the discrete time process Xdleaves the disk D (n). To prove this lemma we �rst describe the dis-tribution of the shallow traps in the disk D (n). We divide the shal-low traps into several groups. Let i0(n) be the integer satisfying 1 �"2�i0(n) 2n=�n < 2. For any i 2 f1; : : : ; i0(n)g, recall thatT "2�i+1"2�i = nx 2 D (n) : "2�i 2n=�n � �x < "2�i+1 2n=�n o: (28)Let C be a large positive constant. We use H1 = H1(n;C; ") to denotethe eventH1(n;C; ") = �� : ��T "2�i+1"2�i �� � Cn"��2i�;8i 2 f1; : : : ; i0(n)g	: (29)



9We show that H1 occurs with an overwhelming probability.Lemma 3.2. There exists K2 independent of " such that for n largeenough and for some positive constants C and c.P[H1(n;K2; ")] � 1� Cn exp(�cn): (30)The proof is postponed.Convention. At this place it is convenient to introduce one conven-tion. Later in this paper we will need di�erent properties of the envi-ronment that we will denote Hi, i = 1; 2; : : : For all these properties wewill prove a result that allows an application of Borel-Cantelli lemma.When we prove such result we will suppose that these properties areveri�ed. We thus may ignore a set of \unusual" environments whoseprobability is zero .Proof of Lemma 3.1. The proof is divided into two parts. We �rstbound the time spent in \very" shallow traps: let � be large enoughsuch that (1 � �)(1 � �) + 1 < 0: (31)We de�ne the set S of very shallow traps byS = �x 2 D (n) : �x � 2n=�n�� � "2n=�=n	: (32)Let GD(n)(�; �) denote the Green's function of the discrete time simplerandom walk in the disk D (n). Then we haveEh �d�1Xj=0 ej�Xd(j)�fXd(j) 2 Sg����i = Xx2D(n)GD(n)(0; x)� (x)�fx 2 Sg;(33)The Green's function can be bounded by (see (224) in Appendix A)GD(n)(0; x) � cn for all x 2 D (n): (34)We thus haveEh �d�1Xj=0 ej�Xd(j)�fXd(j) 2 Sg����i � cn Xx2D(n) � (x)�fx 2 Sg: (35)Let i1(n) be the integer satisfying2�1+n=�n�� � 2�i1(n)"2n=�n � 2n=�n��; (36)that is i1(n) � (� � 1) log2 n. The expression (35) is bounded fromabove bycn Xx2D(n) � (x)�f� (x) � 2g+ cn i0(n)Xi=i1(n) Xx2D(n) � (x)�fx 2 T "2�i+1"2�i g: (37)



10By Lemma 3.2 and (31) this can be bounded by� 2cnm2nn1�� + Cn i0(n)Xi=i1(n) "2�i+1 2n=�n � n"��2i�� Cn"1��2n=� i0(n)Xi=i1(n) 2i(��1) + o(2n=�)� C"1��2n=�n1+(1��)(1��) + o(2n=�) = o(2n=�): (38)This �nishes the �rst part.In the second part we bound the time spent in T " n S. We treatseparately the time spent in T "2�i+1"2�i for i 2 1; : : : ; i1(n), where i1(n) isde�ned as above. Let K 0 be a large positive constant and let A(n; i)be the eventA(n; i) = n Xx2T "2�i+1"2�i GD(n)(0; x)� (x) � K 02n=�"1��2�i(1��)o: (39)From the de�nition of T "2�i+1"2�i we haveP[A(n; i)]� Ph2 Xx2T "2�i+1"2�i GD(n)(0; x) � K 0n"��2�ii: (40)By Lemma 3.2, there are at most K2n"��2i� sites in T "2�i+1"2�i P-a.s. forlarge n. For i = i1(n) this number is of order n1+�(��1), for all othersi's it is smaller.Let yi, i = 1; : : : ; Rn, be a collection of uniformly, independentlychosen points in D (n). By an easy combinatorial argument it is possibleto prove that if Rn is o(2n=2n(1��)=2), then the probability that two ofthem are at the same place tends to zero. Since this is evidently satis�edfor the number of sites in any of T "2�i+1"2�i , we can bound the sum in (40)by the sum over the random collection yi, i = 1; : : : ;K2n"��2i�. Forany small, positive c and for n large enough we thus haveP[A(n; i)]� (1 + c)Ph2K2n"��2i�Xi=1 GD(n)(0; yi) � K 0n"��2�ii: (41)It is known that there exist constants � and C not depending on nsuch that (see Lemma A.2 for proof of this claim)E� exp ��GD(n)(0; y1)�� � C: (42)By standard argument we can thus choose K 0 not depending on i suchthat P[A(n; i)]� c exp(�c0n"��2i�): (43)



11Since i1(n)� n, we get by summationPh i1(n)[i=1 A(n; i)i � cn exp(�c0n"��); (44)and thus for n large enough none of A(n; i) occurs P-a.s. However, if itis the case, we have (using also the result of the �rst part of the proof)Eh �d�1Xj=0 ej�Xd(j)�(Xd(j) 2 T ")����i� i1(n)Xi=0 K 02n=�"1��2�i(1��) + o(2n=�) � K12n=�"1��: (45)This �nishes the proof. �It remains to show Lemma 3.2.Proof of Lemma 3.2. We �rst study the size of T "2�i+1"2�i for some �xedindex i. The probability pn;i that a site in D is in T "2�i+1"2�i ispn;i = "��n�2n 2i�hL�"2�i 2n=�n �� �12��L�"2�i+1 2n=�n �i: (46)Recall that L de�ned in (14) is bounded, so the expression in thebrackets can be bounded from above uniformly in i by some constantdepending only on the function L. Hence,pn;i � c"��n�2n 2i�: (47)Applying exponential Markov bound we get for � > 0, using (47) andthe fact that (1 + 1=n)n � e,P���T "2�i+1"2�i �� � K2n"��2i�� � exp(��K2n"��2i�)E� exp ����T "2�i+1"2�i ����= exp(��K2n"��2i�)�(1� pn;i) + pn;ie��m2nn1��� exp �n"��2i�(�K2� +mce�)�: (48)If K2 is chosen large enough, the expression in the parentheses is neg-ative and thus the required probability decreases exponentially. Theprobability of Hc1 satis�esP[Hc1] = P� i0(n)[i=1 ���T "2�i+1"2�i �� � K2n"��2i���� i0(n)Xi=1 exp�n"��2i�(�K2� +mce�)	� i0(n) exp�n"��(�K2� +mce�)	: (49)



12Since i0(n) � n=�, the proof is �nished. �4. Very deep trapsIn this section we estimate the probability of hitting a very deeptrap. The aim is to show that these sites may be neglected from theanalysis.Lemma 4.1. For every Æ > 0 and m there exists M such that for nlarge enough and for P-a.e. environment �P�X(t) hits TM(n) before �(n)j�� � Æ: (50)Proof. The standard large deviation argument givesP[jTM(n)j > Cnm=M�] � C 0 exp(�cnm=M�) (51)for some constants C, C 0 and c. We can thus take P-a.s. n large enoughsuch that jTM(n)j � Cnm=M�. Let A be an uniformly chosen randomsubset of D (n) with Cnm=M� elements. ThenP�P[X hits TM before �j� ] > Æ�� P�P[X hits A before �jA] > Æ�: (52)Further, let fyig, i = 1; : : : ; Cnm=M� be a collection of independently,uniformly chosen random points in D (n). As in the previous section wecan replace A by this collection. The expression (52) is then boundedby � (1 + c)PhCnm=M�Xi=1 P[X hits yi before �jyi] � Æi (53)for some small positive c. Since the terms in the sumation are inde-pendent, we can bound the last expression, using again the exponentialMarkov inequality, by� (1+ c) exp(�Æ�n)E� exp ��nP[X hits yi before �jyi]��Cnm=M�: (54)The inequality (226) from Appendix A applied on the disk D (n) givesE� exp �� (n log 2=2 + o(n))P[X hits y1 before �]�� � C: (55)Therefore, taking �n = b logp��1m2nn1��, b < 1P�P[X hits TM before �j� ] > Æ� � exp� � Æcn+ c0mn=M� + o(n)	:(56)The lemma then follows by takingM large enough and applying Borel-Cantelli argument. �



135. J is large enoughTo justify the approximation of �Sn by Y n we should now prove thatthe index of the �rst bad part, J , is large enough. More precisely,we should show that one can choose � and m such that, with largeprobability, the index J of the �rst bad part of the trajectory of X issuÆciently large for our purposes.Lemma 5.1. For any Æ, k, and P-a.e. � there exist m and � notdepending on " and M such that for n large enoughP�J(n)n�+�1 � kj� � � 1 � Æ: (57)To prove this lemma we should verify that all events described inSection 2 happen with low probability. This is the goal of all followingtechnical lemmas. The proof of Lemma 5.1 can be found at the end ofthis section.Event (i). The most complicated part of the proof is to show thatX does not hit two deep traps during one part of the trajectory. Thefollowing lemma is a little bit more precise than is needed to boundJ , however, we will need this more precise result later. We use pM" todenote the factor "�� �M��.Lemma 5.2. LetVx0(n) = Xy2TM" Px0�Xd hits y before exiting Dx0(2nn)j� �; (58)where Px0 denotes the law of the simple random walk Xd started at x0.Then for any Æ and P-a.e. � there exists n0 such that for all n > n0and x0 2 E(n) (see (13) for de�nition of E(n)),K(1 � Æ)pM"n1��� � Vx0(n) � K(1 + Æ)pM"n1��� (59)with K = (log 2)�1.To prove this lemma we should describe the distribution of the deeptraps inside D (n). This description is contained in Lemmas 5.3 and 5.4.First, we will show that the deep traps are distributed almost ho-mogeneously around the disk. Let � <  < 1 � � and let H2 =H2(n; Æ; ";M) be the set of con�gurations of the environment satisfy-ing the \homogeneity" condition:H2 = �� : ��TM" \Bx(2nn�)�� 2 �(1� Æ)pM" n�+�; (1 + Æ)pM" n�+��for all x such that Bx(2nn�) � D (n):	 (60)Lemma 5.3. For any ", M , and Æ there exist positive constants C andc such that for n large enoughP[H2] � 1� Cn1����Æ�2 exp(�cn�+�): (61)



14Proof. We divide the complement of H2 into two parts. First, we treatthe case when there is a region in D where there are not enough deeptraps. Let A be the event that there is a square of area 2nn� in D (n)where there are less than (1� Æ)pM" n�+� sites from TM" (n),A = f9x 2 D : ��TM" [Bx(2nn�)�� < (1 � Æ)pM" n�+�;Dx(2nn�) � D g:(62)We use G to denote the grid b2n=2n�=2Æ=5cZ2. Every square of area2nn� contains at least one square of area 2nn�(1� Æ=2) with the centrein G for n suÆciently large. Hence, if A is true, then there is a squareof area 2nn�(1� Æ=2) which has centre x 2 G, and which contains lessthan (1�Æ)pM" n�+� sites. We use Ax to denote the last event. We haveP[A]�Xx P[Ax] = C 0Æ�2n1����P[Ax]; (63)where the sum runs over all x 2 G such thatBx((1�Æ=2)2nn�) � D . Weused the obvious fact that P[Ax] does not depend on x. The probabilityof Ax can be bounded using standard methods. Take � > 0. For nlarge enough, the probability p that a site is in TM" (n) is larger than(1� �)pM" 2�nn�. For � > 0 we haveP[Ax] � exp(�(1 � Æ)n�+�pM" )�(1� p) + e��p�2nn� (1�Æ=2)� exp(�(1 � Æ)n�+�pM" )h1 + (e�� � 1)(1� �)n�pM"2n i2nn� (1� Æ2 ):(64)If n is large enough, the last expression is bounded byP[Ax] � exp �n�+�pM" ��(1 � Æ) + (e�� � 1)(1 � �)2(1 � Æ=2)��: (65)It is not diÆcult to show that for any Æ there exist � and � such thatthe exponent is negative. Hence, we haveP[A]� C 0n1����Æ�2 exp(�c0n�+�): (66)In the second part of the proof we exclude the possibility that thereare places in D where the deep traps are too dense. Let B be the eventthat there is a square of area 2nn� intersecting D (n) where is morethan (1 + Æ)"��n�+� sites from TM" (n). The probability of B can bebounded exactly in the same way as the probability of A, one shouldonly consider the squares with area 2nn�(1 + Æ=2) and centres in G.We thus haveP[H2(n)c] � P[A[ B] � Cn1����Æ�2 exp(�cn�+�): (67)This �nishes the proof. �The lemma we have just proved is not precise enough to bound theprobability of hitting traps that are closer than p2nn� to the startingpoint. The following lemma will serve us for that bound. Again, itdescribes some sort of homogeneity of the environment



15We consider the events H3(i) = H3(i; n; ";M),H3(i) = �9x 2 D (n) : ��Bx(2n+in��) \ TM" �� � 4 log2 n(1 _ 2in���"��)	;(68)where a _ b denotes the maximum of a, b. We de�ne H3 byH3 = 1\i=�1H3(i): (69)Observe that 2n+in�� � 2nn� for �xed i and n large enough. So, westudy here much smaller squares than in the previous lemma. Hence,the description of the homogeneity is more precise in this direction. Onthe other hand, we prove only the upper bound on the number of thedeep traps in these squares and this bound is also \weaker" than theprevious bound.Lemma 5.4. There exists a constant C such thatP[H3] � 1 � Cn�3: (70)Proof. Fix some i and consider the lattice Gi = Z2p2n+in��. If thereis x such that jBx(2n+in��) \ TM" j � 4 log2 n(1 _ 2in���"��), thenthere is a point y 2 Gi such that By(4 � 2n+in��) contains more than4 log2 n(1 _ 2in���"��) sites from TM" . The number of squares witharea 4 � 2n+in�� and centres in Gi that intersect D (n) is bounded byCn1��+�2�i.Consider now one such square. The probability that it contains toomany sites from TM" can be bounded by standard argumentsP�jB(4 � 2n+in��) \ TM" j � 4 log2 n(1 _ 2in���"��)� �c exp �� �4 log2 n(1 _ 2in���"��) + 4pM" (e� � 1)2in���"���: (71)Since � � � < 0, we can choose � such that for n large enough thelast expression is bounded by (1=2)log2 n. Summation over i and overall squares that intersect D (n) gives usP[Hc6] � 1Xi=�1C2�in1��+�(1=2)log2 n � Cn�3: (72)�We now have all ingredients to prove Lemma 5.2.Proof of Lemma 5.2. We can suppose that x0 is the origin. We use �to denote the exit time from D(2nn). Let  0 be a constant satisfying� <  0 < . We divide the sum V0(n) into two parts. First, we sumover all deep traps that are far enough from the origin. Precisely,we consider the deep traps that are in D(2nn) n D(2nn0). Let I1denotes the sum over such traps. We use I2 to denote the sum over theremaining deep traps.



16 To show the upper bound on I1, we cover the set D(2nn)nD(2nn0)by squares of area 2nn� and centres in p2nn�Z2. Let x1; : : : ; xR denotethe set of centres of such squares that intersect D(2nn) n D(2nn0).Since � <  0, the size of each such square is negligible with respect to itsdistance to the origin. All deep traps in such squares have thus almostthe same chance to be hit. We use expression (223) from Appendix Ato estimate probability that X hits some point before exiting fromD(2nn). Let rn be the radius of this disk, rn = p��12nn .I1 � RXi=1 Xyj2Bxi (2nn� )yj2TM" �1� log jyjjlog rn +O(n�2)�= RXi=1 ��Bxi(2nn�) \ TM" ���1 � log jxijlog rn +O(n�1+(��0)=2)�; (73)where we use the estimatelog jyjjlog rn � log jxijlog rn = O(n�1+(��0)=2) (74)that is valid for any yj 2 Bxi(2nn�).From Lemma 5.3 we know that for n large enough jBxi(2nn�)\TM" j �n�+�pM" (1 + Æ=2) and thusI1 � RXi=1 n�+�pM" (1 + Æ=2)�1� log jxijlog rn +O(n�1+(��0)=2)�: (75)We now replace the summation by integration making again an errorof order O(n�1+(��0)=2). I1 is thus bounded from above byZD(2nn)nD(2nn0 ) n�+�pM"2nn� �1 + Æ2��1� log jxjlog rn +O(n�1+(��0)=2)� dx:(76)The integration givesI1 � n�+�1pM"log 2 �1 + Æ2�(1 + o(1)) � n�+�1pM"log 2 �1 + 3Æ4 � (77)for n large enough. This �nishes the proof of the upper bound forI1. The proof of the lower bound is analogous. After a very similarcalculation we get I1 � n�+�1pM"log 2 �1� 3Æ4 �: (78)We should now estimate the sum I2 over all sites x 2 TM" \(D(2nn0)nD(2nn��)). The disk D(2nn��) can be excluded since by the assump-tions of the lemma x 2 E(n) and so there are no deep traps in thisdisk. We cover the domain by objects comprising eight squares of area2n+in�� whose union is the square, centred at the origin, of nine times



17larger area with the middle square cut o�. The parameter i takes valuesin the set f�1; 0; 1; : : : ; ( 0 + �) log2 ng. We use this covering becauseif the trap is too close to origin, we should know more precisely its po-sition to estimate its hitting probability. Our covering becomes clearly�ner when the origin is approached.Any point inside the i-th object from the previous paragraph hasdistance from origin at least p2n+in��=2. In each of the eight squaresthere is, by Lemma 5.4, at most 4 log2 n(1_ 2in���"��) sites from TM" .By formula (223) for the hitting probability of a point in D (2nn) wehaveI2 � 8 (0+�) log2 nXi=�1 �1� log(p2n+in��=2)log rn +O�2�n�in�log rn �+O(log�2 rn)�� 4 log2 n(1 _ 2in���"��): (79)The expression in the brackets can be easily bounded by Cn�1 log nwith some large constant C. Hence,I2 � C (0+�) log2 nXi=�1 log nn log2 n(1 _ 2in���"��): (80)Since the expression inside of the summation is increasing in i, the lastdisplay can be trivially estimated by ( 0+�) log2 n times the last term.This gives I2 � Cn�+0�1 log4 n� n�+�1pM"log 2 �1 + Æ4�: (81)Putting together (77), (78), and (81) we getn�+�1pM"log 2 (1� Æ) � I1 � V0(n) = I1 + I2 � n�+�1pM"log 2 (1 + Æ): (82)This �nishes the proof of Lemma 5.2. �Using exactly the same approach as above and Lemma 5.6 below weshowLemma 5.5. For x 2 TM" , let us rede�neVx(n) = Xy2TM" nfxgPx�Xd hits y before exiting Dx(2n+1n)j� �; (83)where Px denotes the law of the simple random walk Xd started at x.Then for any Æ and P-a.e. � there exists n0 such that for all n > n0and all x 2 TM" , Vx(n) � CpM"n1��� : (84)



18 Let H4 = H4(n; ") be the eventH4(n; ") = �� : minfjx� yj : x; y 2 T"(n)g � 2p��12nn��	: (85)The constant 2 before the square root is not necessary for the currentapplication, but it will be used later.Lemma 5.6. There exists constant C = C(";m) such thatP[H4] � 1 �Cn1+���: (86)Proof. Let B(x) be the eventB(x) = �x 2 T"(n)	 \ �9y 2 T"(n); jy � xj � 2p��12nn��	: (87)Then P[B(x)]� Cn2���2n "�2�: (88)and the result follows by summation over all x 2 D (n). �The following lemma is an easy consequence of Lemma 5.2. It is theactual estimate of the probability of hitting a deep trap.Lemma 5.7. For any Æ > 0 and P-a.e. � , there exists n0 such that forn > n0 and for all x 2 E(n), the probability that the simple random walkstarted at x hits exactly one site from TM" (n) before exiting Dx(2nn)is in interval �K(1� Æ)pM" n�+�1;K(1 + Æ)pM" n�+�1�: (89)The probability that it hits more than one deep trap is bounded byP[X hits at least two sites from TM" ] � Cn2(�+�1)(pM" )2 (90)for some positive constant C.Proof. Let TM" \Dx(2nn) = fx1; : : : ; xLg. Assume that some point xiwas hit by X before the exit from D(2nn).We apply now Lemma 5.5 and the Strong Markov property. We thushave Xj 6=i P[X hits xjjX hit xi] � Cn�+�1pM" : (91)The Bonferroni inequalities giveP[X hits TM" ] �Xi P[X hits xi] � K(1 + Æ)pM" n�+�1P[X hits TM" ] �Xi P[X hits xi]� 12Xi Xj 6=i P[X hits xi and xj]� K(1� Æ)pM" n�+�1 � C(pM" )2n2(�+�1) � K(1� 2Æ)pM" n�+�1(92)for n large enough. Similarly we get from the Strong Markov propertyand Lemma 5.5P[X hits at least two points from TM" ] � C(pM" )2n2(�+�1): (93)



19This �nishes the proof of Lemma 5.7. �Event (iv). To �nd a lower bound for J , we should further verifythat the probability that a part of the trajectory ends too close to somedeep trap is small.Lemma 5.8. For P-a.e. � , the probability that the simple random walkstarted at arbitrary x 2 D (n) exits Dx(2nn) at some point that is inD (n) n E(n) is smaller than Cn2��=2�=2.Proof. We start again with the description of the properties of theenvironment. Let rn be the radius of the disk D(2nn). We useAx(2nn) to denote the annular ring with the centre x, the innerradius rn � p��12nn��, and the outer radius rn + p��12nn��. LetH5 = H5(n; ";M) be the eventH5 = �� : jTM" (n) \Ax(2nn)j � n2 for all x 2 D (n)	: (94)Lemma 5.9. For n large there exist constants C and c such thatP[H5] � 1 � C2nn1�� exp(�cn2): (95)Proof. There are less than C2nn=2��=2 points in the annulus Ax(2nn).The probability that a trap is in TM" (n) is of order pM" 2nn��. Thestandard application of Markov inequality givesP�jAx(2nn�) \ TM" (n)j > n2� � exp(�c(";M)n2): (96)The result follows by summation over all x 2 D (n). �We can now �nish the proof of Lemma 5.8. We use the fact thatprobability of exiting the disk of radius R in a particular point atits border is O(1=R) (see [Law91] Lemma 1.7.4). From Lemma 5.9we know that there are less than n2 deep traps in annulus Ax(2nn).This implies that there are at most cn2p2nn�� points on the border ofDx(2nn) that are close to some deep trap. The required probabilityis thus bounded from above byCp2�nn�n2p2nn�� = Cn2��=2�=2: (97)�Event (v). The next lemma excludes the possibility of hitting adeep trap that is too close to the border of the disk with area 2nnaround the starting point.Lemma 5.10. For any x 2 D , the probability that the random walkstarted at x hits a deep trap in Ax(2nn) before the exit from Dx(2nn)is smaller than Cn2�=2��=2.Proof. We need to estimate the probability that we hit some point ythat is in the distance smaller than p��12nn�� from the border ofDx(2nn). We use (224) to estimate this probability. The advantage



20of (224) against (223) is that the error terms are much smaller. Sincefor any disk D centred at xGD(x; y) = Px[X hits y before exit from D]GD(y; y) (98)and GD(y; y) � 1, we know that Px(X hits y) � GD(x; y). Accordingto Lemma 5.9 there are at most n2 deep traps in Ax(2nn). We thushavePx[X hits TM" \Ax(2nn) before exiting Dx(2nn)]� 2n2� h logp��12nn � log �p��12nn(1 � n�=2��=2)�+O(2�n=2)i� � cn2 log(1� n�=2��=2) � Cn2�=2��=2: (99)This �nishes the proof. �Event (iii). Finally, we need to show that X almost never returnsto a deep trap after exiting a disk of area 2nn�� around it. We donot need to consider the traps that are closer than p��12nn�� to theborder of D because hitting such traps has already been dealt withwhen considering (ii) and (v) de�ning the \bad" event.Lemma 5.11. There exists a constant C such that for any x satisfyingDx(2nn��) \ D (n)c = ;, the probability that X returns to x before �after exiting disk Dx(2nn��) is smaller than Cn�1 log n.Proof. Let pret denotes the required probability and let � be the �rsttime when X exits Dx(2nn��). Obviously, � < �. By the MarkovpropertyGD (x; x) = �Xi=0 Px[Xd(i) = x] = �Xi=0 Px[Xd(i) = x] + �Xi=�+1Px[Xd(i) = x]= GD(2nn��)(0; 0) + pretGD (x; x): (100)Hence, pret = 1� GD(2nn��)(0; 0)GD (x; x) � 1 � GD(2nn��)(0; 0)G2D (0; 0) ; (101)where 2D denotes the disk with centre the origin and twice the radiusof D . Using the expression (225) we getpret � 1 � log(2nn��) +O(1)log(2 � 2nn1��) +O(1) � Cn�1 log n: (102)This �nishes the proof. �Proof of Lemma 5.1. We have now all ingredients to prove Lemma 5.1.We should prove that the probability that some of the events (i){(v)from Section 2 happen during �rst Cn1��� parts can be made very



21small. We will use J(i); : : : ; J(v) to denote the �rst part where (i), . . . ,resp. (v) occurs.The simplest condition is (ii). This condition requires that X cannotexit D during the good part of the trajectory. That means that startingpoint of a part of the trajectory satisfying (ii) should be in the annularring with the outer radius p��1m2nn1�� (which is the radius of D )and the inner radius p��1m2nn1�� � p��12nn. The sequence ofstarting points xni is a randomwalk onZ2. It follows from the invarianceprinciple for random walks that the law of J(ii)n�+�1m�1=2 convergesas n ! 1 to the exit time for a standard two dimensional Brownianmotion from the unit disk, having started at the origin. In particularthis distribution does not put mass at the value 0 and does not dependon m.It is thus possible to �x m large enough such thatP[J(ii)n�+�1 � kj� ] � 1 � Æ=4: (103)From the same reason we can choose K > k such thatP[J(ii)n�+�1 � Kj� ] � 1 � Æ=4: (104)Hence, outside a set of probability Æ=2 the number of parts before J(ii)is in interval (kn1��� ;Kn1���). We use A to denote this event.Conditionally on A, we will show thatP�min(J(i); J(iii); J(iv); J(v)) � J(ii)��� ; A�! 0 as n!1: (105)The claim of the lemma is then an easy consequence of this fact andthe previous paragraph. Observe that (105) means that in the majorityof cases the �rst bad event that happens is the possibility of exit fromD . The probability of all other events is negligible.We start with condition (iv). According to it, the part is bad if itsend is not in E(n). Lemma 5.8 states that the probability that thishappens during a particular part of trajectory is of order n2��=2�=2.Since the number of parts before J(ii) is bounded by Kn1���, theprobability that (iv) happens is bounded by Kn3���=2��=2. However,� can be chosen large enough to assure that this bound converges to 0.We thus have P[J(iv) < J(ii)j� ; A]! 0: (106)Using a very similar reasoning and Lemma 5.10 we get exactly the sameestimate for condition (v). Hence,P[J(v) < J(ii)j� ; A]! 0: (107)Condition (i) requires thatX does not visit two deep traps during onepart of the trajectory. We use B to denote the event A\fJ(iv) > J(ii)g.We show P[J(i) < J(ii)jB; � ]! 0: (108)



22Since we assume that J(iv) � J(ii), we can apply Lemma 5.7. It claimsthat probability of hitting two deep traps during one part is of ordern2(�+�1). By the same argument as before we can bound the proba-bility in (108) by Kn�+�1 and it tends to 0 as n!1.The last condition (iii) demands that X does not return to a deeptrap after exiting the disk of area 2nn�� around it. For one partic-ular trap probability of such event can be bounded by cn�1 log n byLemma 5.11. According to Lemma 5.2, the probability of visiting adeep trap during one part of the trajectory is of order n�+�1. Let Ndenotes the number of visited deep traps before �. Conditionally onB, it is not diÆcult to show using Markov inequality thatP[N � n1=2jB; � ] � Cn�1=2: (109)We have thusP[J(iii) < J(ii)jB; � ]� P[J(iii) < J(ii)jB; � ; N � n1=2]P[N � n1=2jB; � ] +P[N � n1=2jB; � ]� cn�1=2 log n+ Cn�1=2 ! 0 as n!1: (110)The claim (105) that follows easily from (106){(110). This �nishes theproof of Lemma 5.1. �6. Properties of the scoreIn this section we will prove the convergence of the sequence of pro-cesses Y n to a L�evy process. This result is contained in Proposition 6.5.Recall that Y n was de�ned in (25) as a well rescaled sum of scores.Hence, we should �rst study the properties of the score.The score of the i-th part of the trajectory depends on the historyonly through its starting point xni . We thus associate to every pointx 2 E(n) the random variable sx, which has the same distribution asthe score of a part of the trajectory of X that is started at x. Wecan ignore the points in D (n) n E(n) because we do not consider theparts of trajectory started in this set (see de�nition of J). We have gotalready some information which can help us to describe the distributionof the random variables sx. According to Lemma 5.7, the probabilityof hitting two deep traps in the disk Dx(2nn) is of order n2(�+�1),and the probability of hitting one deep trap is with high precisionKpM" n�+�1. Otherwise X does not hit any deep trap. In the last casesx = 0 (if none of (i){(v) of Section 2 happen).We want now to study more precisely the distribution of sx condi-tionally on sx < 1. To achieve it we should gain more informationabout the depth of the trap that X hits as the �rst. The idea behindthe proof is that as n increases the density of deep traps becomes lower,and the hitting measure of TM" charges more and more sites. The dis-tribution of the depth of the �rst visited trap should be thus close to



23the original distribution of the depth of the trap conditioned on beingbetween "2n=�=n and M2n=�=n.To prove this heuristics we divide the set of deep traps into severalparts and we estimate the probability of hitting each of them. Let h(x)be a function satisfyingh(x) � (log x)�1; limx!1 h(x) = 0; (111)and (with L de�ned in (14))L(2n=�n�1x)� 1 = o(h(n)) for all x � ": (112)Such function exists because limx!1 L(x) = 1. Let zn(i) satisfy " =zn(0) < zn(1) < � � � < zn(R) = M and zn(i+1)� zn(i) 2 (h(n); 2h(n))for all i 2 f0; : : :R � 1g.We now estimate the probability of hitting a trap in T zn(i+1)zn(i) . Weuse pni to denote pni = zn(i)�� � zn(i+ 1)��: (113)Lemma 6.1. For any Æ > 0 and P-a.e. � there exists n0 such that forall n > n0, for all x 2 E(n), and for all i = f0; : : : ; R�1g the probabilitythat the simple random walk started at x hits a trap in T zn(i+1)zn(i) beforethe exit from Dx(2nn) is in the interval�K(1� Æ)n�+�1pni ;K(1 + Æ)n�+�1pni �: (114)Proof. The proof is very similar to the proof of Lemma 5.2. We should�rst improve the bounds on the homogeneity of the environment thatwe have proved in Lemma 5.3.Let H6 = H6(n; Æ; ";M) be the event that for every square Bx(2nn�)in D (n) and for every i 2 f0; : : :R�1g the number of sites in T zn(i+1)zn(i) \Bx(2nn�) is in the interval�(1 � Æ)n�+�pni ; (1 + Æ)n�+�pni �: (115)We prove that H6 occurs P-a.s. for n large enough.Lemma 6.2. For any Æ there exist constants c and C such that for nlarge enoughP[H6] � 1 � C log(n)n1����Æ�2 exp �� cn�+�h(n)�: (116)Using this lemma it is not diÆcult to �nish the proof of Lemma 6.1.We will not give the detailed reasoning, because the proof followsthe same line as the proof of Lemma 5.2. The only change is thatLemma 6.1 should be used instead of Lemma 5.3. �Proof of Lemma 6.2. To show that H6 occurs P-a.s. for n large enoughwe will need the following technical lemma that estimates the proba-bility that a trap is in T zn(i+1)zn(i) .



24Lemma 6.3. For any � > 0 there exist n0 such that for all n � n0 andall i = 0; : : : ; R� 1P�0 2 T zn(i+1)zn(i) � 2 �(1� �)n�2n pni ; (1 + �)n�2n pni �: (117)Proof. Let g(x) = L(x)� 1. Then by (14) we haveP�0 2 T zn(i+1)zn(i) � = Ph�0 2 hzn(i)2n=�n ; zn(i+ 1)2n=�n �i= n�2n �pni + g(2n=�n�1zn(i))zn(i)� � g(2n=�n�1zn(i+ 1))zn(i+ 1)� �: (118)We should thus show thatg(2n=�n�1zn(i))zn(i)� � g(2n=�n�1zn(i+ 1))zn(i+ 1)� = o(pni ): (119)However, this is obviously true sincepni = (zn(i))�� � (zn(i+ 1))�� � ch(n) (120)for some c depending only on M , and g(2n=�n�1znj ) = o(h(n)) by (112).�The remaining part of the proof of Lemma 6.2 is analogous to theproof of Lemma 5.3. We only explain the appearance of the additionalfactors log(n) and h(n) that are in (116) but not in (61). The loga-rithm before the exponential is due to the summation over all possiblevalues of i and (111). The factor h(n) inside the exponent comes fromLemma 6.3 which replaces the bound on p before (64), and from theexistence of constants c(";M), C(";M) such thatch(n) � 1zn(i)� � 1zn(i+ 1)� � Ch(n): (121)This �nishes the proof. �Using Lemma 6.1 we can now describe the behaviour of randomvariables sx. Due to condition (ii) from Section 2, all good parts of thetrajectory starts at sites that are in the distance larger than p��12nnfrom the border of D (n). That is why we introduce E0(n) = fx 2 E(n) :Dx(2nn) \ D (n)c = ;g. The random variables sx then satisfyLemma 6.4. For P-a.e. random environment �limn!1 maxx2E0(n) 1 � E[exp(� �sx2n=� )jsx <1; � ]n�+�1 = F (�);limn!1 minx2E0(n) 1 � E[exp(� �sx2n=� )jsx <1; � ]n�+�1 = F (�); (122)withF (�) = F (�; ";M;�) = K�pM" � Z M" �1 +K0�z � 1z�+1dz� (123)



25and K0 = ��1 log 2.Proof. By Lemmas 5.2, 5.8, and 5.10 we know that if � is large enough,P[sx =1] = O(n2(�+�1)). Since this probability is much smaller thanany other probability that will be used in the following computation,the conditioning on sx <1 has almost no e�ect. Actually,Eh exp�� �sx2n=�����sx <1; �i= P[sx <1j� ]�1Eh exp�� �sx2n=���fsx <1g����i= Eh exp�� �sx2n=������i�1 +O(n2(�+�1))�: (124)If the process X hits deep trap y in Dx(2nn) and nothing unusualhappens, then the random variable sx is a sum of a geometrically dis-tributed number of exponential random variables with mean �y. Themean of the geometrically distributed number of visits of y is equal toGD(2nn��)(0; 0), where by (225)GD(2nn��)(0; 0) = 2� logp��12nn��+O(1) = n� log 2+O(log n): (125)Since the geometrically long sum of exponential random variables isagain exponentially distributed, the score sx is in this case an expo-nential random variable with mean �y(n log 2=� + O(log n)). This im-plies that conditionally on hitting a trap with the depth �y the Laplacetransform of sx=2n=� equalsEh exp�� �sx2n=������yi = 11 + ��y2�n=�(n log 2=� +O(log n)) : (126)We now estimate the Laplace transform E� exp(��sx2�n=�)j��. Westart with a lower bound. Choose Æ > 0. By Lemmas 5.7, 6.1, andexpression (126) we have for n large enoughEh exp�� �sx2n=������i � �1� (1 + Æ)KpM" n�+�1�+Kn�+�1 RXi=1 1� Æ1 + � zn(i)2n=� 2n=�n n� log 2 + o(1)� 1(zni�1)� � 1(zn(i))��:(127)The last expression can be bounded from bellow by1�Kn�+�1�pM" � Z M" �1 +K0�z 1z�+1dz�� ÆCn�+�1pM" ; (128)



26with C being a constant not depending on Æ. The last expressiontogether with (124) givelim supn!1 maxx2E0(n) 1� E[exp(� �sx2n=� )jsx <1; � ]n�+�1� K�pM" � Z M" �1 +K0�z 1z�+1dz�+ CÆpM" : (129)Since Æ can be taken arbitrarily small, the proof of the upper bound forthe �rst expression in (122) is �nished. The proof of the lower boundfor the second expression in (122) is completely similar. �We can �nally show the convergence of the sequence Y n to a L�evyprocess (see [Ber96] for complete treatment of L�evy processes). Thefollowing proposition will be used later to prove aging.Proposition 6.5. For P-a.e. realisation of the environment, the se-quence of processes Y n(t) converges weakly in the Skorokhod topologyon D([0;1)) to the L�evy process Y (t) with the L�evy measure�(dx) = �KK0 Z M" 1z�+2 exp�� xK0z� dz dx: (130)Proof. We �rst prove the weak convergence of �nite dimensional dis-tributions. Let 0 = t0 < t1 < � � � < t`. We will show the convergenceof Laplace transforms. By de�nition of Y nEh exp��X̀i=1 �i�Y n(ti)�Y n(ti�1)��i = Eh Ỳi=1 Yj2B(n;i)exp�� �i2n=� snj �i;(131)where B(n; i) = fbn1���ti�1c+ 1; : : : ; bn1���ticg.If j < J , then the random variables snj are determined by behaviourof X, otherwise they are equal to ~snj . Since ~snj 's are independent of allother randomness, we can write= 1Xk=0 P[J = k]Eh Ỳi=1 Yj2B(n;i)j<J exp�� �i2n=� snj ����J = kiEh Ỳi=1 Yj2B(n;i)j�J exp�� �i2n=� ~snj����J = ki: (132)At this place it is necessary to de�ne the distribution of ~snj . Werequire that ~sni 's satisfy the same relation as sx in the limit, i.e.Eh exp�� �2n=� ~snj�i = 1 � F (�)n�+�1: (133)



27We have obviously chosen the ~snj 's in the way that the second expecta-tion in (132) does not pose any problems. We should thus control onlythe �rst one.Let y = fy0; : : : ; ykg 2 E(n)k+1. We use xn to denote the sequencexn0 ; : : : ; xnk of starting points of the parts of the trajectory. We haveEh Ỳi=1 Yj2B(n;i)j<k exp�� �i2n=� snj �i=Xy P[xn = y]Eh Ỳi=1 Yj2B(n;i)j<k exp�� �i2n=� snj ����xn = yi: (134)Only the last term of the product depends on yk. We can thus sumover all possible values of the endpoint of the last part. Let x0n, resp.y0, denote the sequences xn and y without the last element. We get=Xy0 P[x0n = y0]Eh Ỳi=1 Yj2B(n;i)j<k exp�� �i2n=� snj ����x0n = y0i: (135)Conditionally on the value xnk�1, the random variable snk�1 is indepen-dent of the rest. The expectation in the last formula can be thus writtenasEh Ỳi=1 Yj2B(n;i)j<k�1 exp�� �i2n=� snj ����x0n = y0iEh exp�� �r2n=� sxnk�1����sxnk�1 <1i;(136)where the index r satis�es k � 1 2 B(n; r). According to Lemma 6.4,the second expectation can be bounded from above by1 � (1 � Æ)F (�r)n�+�1 (137)if n is large enough.We can now repeat the same manipulation with the last but onevalue of j, etc. At the end, putting the result of this iteration into(132), we getEh exp�� X̀i=1 �i�Y n(ti)� Y n(ti�1)��i� Ỳi=1 �1 � (1 � Æ)F (�i)n�+�1�bn1��� (ti�ti�1)c: (138)



28Taking the limits we obtainlim supn!1 Eh exp�� X̀i=1 �i�Y n(ti)� Y n(ti�1)��i� exp h� X̀i=1 (1� Æ)F (�i)(ti � ti�1)i: (139)In the same way we obtain a lower bound. Since Æ was arbitrary wehavelimn!1 Eh exp�� X̀i=1 �i�Y n(ti)� Y n(ti�1)��i= exp h� X̀i=1 F (�i)(ti � ti�1)i: (140)The corresponding Laplace transform of Y (t) is easy to calculate.We haveEh exp�� X̀i=1 �i�Y (ti)� Y (ti�1)��i = exp h� X̀i=1 	(�i)(ti � ti�1)i;(141)where 	(�) is the Laplace exponent of Y . By L�evy-Khintchine formulait is equal to 	(�) = Z 10 (1� e��x)�(dx): (142)An easy integration gives the same result as (140).To prove the weak convergence it remains to verify that the sequenceYn is tight. We use Theorem 16.8 from [Bil99]. We should show thatfor any N and Æ1, Æ2 there exist a, n0, and � such that(i) P[ supt2[0;N ] jYn(t)j � a] < Æ1 for all n > n0(ii) P[w(Y n; �;N) � Æ2] < Æ1 for all n > n0,wherew(f; �;N) = infftig max0<i�r supfjf(s)� f(t)j : s; t 2 [ti�1; ti)g (143)and the in�mum runs over all �nite collections ftig such that 0 <ti � ti�1 < �, t0 = 0, and tr = N .Proof of (i) Since Y n are increasing, (i) is equivalent to the tight-ness of the sequence Y n(N). From convergence of �nite dimensionaldistribution we know that the Laplace transforms of Y n(N) converge toLY (N)(�) = E[exp(��Y (N))]. It is suÆcient to verify that this Laplacetransform satis�es lim�!0LY (N)(�) = 1. However, LY (N) is continuous



29andLY (N)(0) = exp(�NF (0)) = exp h�NK�pM" � Z M" �z�+1dz�i = 1:(144)Proof of (ii) According to Lemma 5.7, the expected number of jumpsof Y n in the interval [0; N ] can be bounded by some constant C notdepending on n. Markov inequality then gives the existence of some C 0such that the probability that the number of jumps of Y n exceeds C 0 issmaller than Æ1=2 for all n large enough. If the number of jumps is �nite,we can take ftig being the superset of the set of all jumps. The processY n is then constant on any interval [ti�1; ti) and thus w(Y n; �;N) = 0.This completes the proof of Proposition 6.5. �7. Proof of agingWe prove here the following proposition that is a more precise versionof Theorem 1.1.Proposition 7.1. For P-a.e. realisation of the environment � and forevery 0 < � <1limt!1R(t; t+ �t) = Z 1=1+�0 sin��� u��1(1� u)�� du � R(�): (145)An easy calculation givesCorollary 7.2. The function R(�) satis�eslim�!0R(�) = 1 and lim�!1R(�) = 0: (146)Proof. I.We introduce some additional notation. Let Z(t) = Z(t; ";M)be a L�evy process with the L�evy measure�0(dx) = �KK0 �Z "0 +Z 1M � 1z�+2 exp�� xK0z� dz dx; (147)independent of the processes Y; Y n. We de�ne the new family of pro-cesses,~Y n(t) = Y n(t) + Z(t) and ~Y (t) = Y (t) + Z(t): (148)The advantage of this new class is that the L�evy measure of ~Y is givenby �(dx) + �0(dx) = �KK0 Z 10 1z�+2 exp�� xK0z� dz dx= �2�(�)K(K0)�x�+1 dx; (149)and thus ~Y is an �-stable subordinator. As an easy consequence of theprevious section we know that the sequence ~Y n converges weakly to ~Y



30whatever the values chosen for " and M . Let Rn = R( ~Y n), R = R( ~Y )denote the range of ~Y n, resp. of ~Y .Fix � > 0. Let Æ1, Æ2 > 0 be arbitrarily small but �xed. We will now�x the values of M , m, " as functions of Æ1, Æ2 and n as a function ofÆ1, Æ2 and t . First, let n(t) be the integer satisfying1 � t2n(t)=� < 21=�: (150)Obviously, n(t) ! 1 as t ! 1. In this section n = n(t) is alwaysconnected with t via (150). We use s = s(t) to denote the rescaledvalue of t, s = t2�n(t)=�. By (150) s satis�es 1 � s < 21=�. In the sameway we rescale the value (1 + �)t. The process ~Y n that we will use toapproximate the time change �Sn should be thus relevant until the level(1 + �)s < (1 + �)21=�. Let t0 be such thatP[ ~Y (t0) < (1 + �)21=�] < Æ1: (151)By the weak convergence of ~Y n to ~Y we can take t (and so n = n(t))large enough such thatP[ ~Y n(t)(t0) � (1 + �)21=�] > 1 � 2Æ1: (152)There are J(n) relevant parts of the trajectory of the process X. Forevery time unit we need n1��� parts. So, we should choose m in sucha way that P[J(n)n�+�1 � t0] > 1 � Æ1: (153)By Lemma 5.1, this can be done independently of " and M . Let A1 bethe event � ~Y n(t0) � (1 + �)s and J(n) � t0n1���	. Then, by (152)and (153), P[A1] � 1� 3Æ1: (154)We can now �x the values of " and M . Later, we want to work withthe processes ~Y n instead of Y n. We should thus guarantee that thearti�cial addition of process Z is not relevant. We take "1 and M1,such that P[Z(t0; "1;M1) > Æ2] < Æ1: (155)We want also safely ignore the error introduced by the very deep andthe shallow traps. By Lemma 4.1, we can take M2 such thatP[X hits TM2 before �d(n)] < Æ1: (156)Further, by Lemma 3.1, we know that there is a constant K1 (notdepending on ";M or n), such that � -a.s. for n (or equivalently t)large enoughEh 12n=� � time spent in T " before �d(n) ����i � K1"1��; (157)and thusPh 12n=� � time spent in T " before �d(n) > Æ2����i � Æ�12 "1��K1: (158)



31Let us take "2 such that Æ�12 "1��2 K1 < Æ1. The constants " and M arethen de�ned by" = min("1; "2) and M = max(M1;M2): (159)This choice of constants ensures that the distance between the re-scaled time change �Sn and the process ~Y n is small. Precisely, letA2 = �j �Sn(t)� ~Y n(t)j � 2Æ2 8t � t0	: (160)Then our choice of constants givesP�A2jA1� � 1 � 3Æ1: (161)Let A = A1 \ A2. Then from (154) and (161) follows that for t largeenough P[A]� 1 � 6Æ1: (162)II. Later we will take the limit n!1 for �xed value of s 2 [1; 21=�]instead of taking limit t ! 1. We will show that this limit does notdepend on s. To be able to show the existence of the limit t!1 wewill need uniformity of convergence in s. The proof of the followingauxiliary lemma is left to the reader.Lemma 7.3. Let Pu(s; Y ) = P�[s; s+ u] \ R(Y ) 6= ;� for Y being ~Y nor ~Y . Then for any u < �21=�limn!1Pu(s; ~Y n) = Pu(s; ~Y ) (163)uniformly for s 2 [1; �21=�].III. We now study the event G(t) = �X(t) = X((1 + �)t)	 for tlarge. We divide the probability space into three disjoint parts,E1(n; s) = � dist(s;Rn) � 2Æ2 or dist((1 + �)s;Rn) � 2Æ2	E2(n; s) = � dist(s;Rn) > 2Æ2;dist((1 + �)s;Rn) > 2Æ2 and�s; (1 + �)s� \ Rn 6= ;	E3(n; s) = �[s� 2Æ2; (1 + �)s+ 2Æ2] \Rn = ;	: (164)This division has the following reason. On event A2 and thereforeon event A, to precision 2Æ2, any interval that does not intersect Rncorresponds to a time period that X spent in Dy(2nn��) around somedeep trap y. Heuristically the points of the range correspond to timeswhen the walk did not meet any deep trap for a long time.We wish to show that essentially event G(t) is the same as eventE3(n; s). ObviouslyP[G(t)\ E3(n; s)] � P[G(t)]� P[E3(n; s)] +P[E1(n; s)] +P[G(t)\ E2(n; s)] (165)We should thus estimate all quantities in the last display. When E1occurs, at least one of the values s, (1 + �)s is too close to Rn. Hence,



32we cannot know precisely what happens with the process X in thissituation. However, the probability of E1 is small. Indeed,P[E1] � P[dist(s;Rn) � 2Æ2] +P[dist((1 + �)s;Rn) � 2Æ2]: (166)If n is large, we can bound the �rst term in the last expression byP[dist(s;Rn) � 2Æ2] � Æ1 + 1 �P[R\ [s� 2Æ2; s+ 2Æ2] = ;]: (167)The constant Æ1 comes from the approximation of Rn by R and byLemma 7.3 can be chosen independent of s. Since ~Y is a stable subor-dinator, the probability P[R\ [s � 2Æ2; s+ 2Æ2] = ;] can be evaluatedusing formulas from Lemma B.1,P[dist(s;Rn) � 2Æ2] � Æ1 + 1 �P[g(s+ 2Æ2) < s� 2Æ2]= Æ1 + 1 � Z s�2Æ2s+2Æ20 sin��� u��1(1 � u)�� du � CÆ1 + C 0Æ1��2 (168)for some constants C, C 0 independent of s. In the same way we canestimate the second probability from (166). We have thusP[E1] � CÆ1+ C 0Æ1��2 : (169)If A occurs, then the realisation of E2 means that X(t) is in diskDy1(2nn��) and X�(1+�)t� is in Dy2 (2nn��) for some y1; y2 2 TM" . Byde�nition of J we have necessarily y1 6= y2, and thus by Lemma 5.6P[G(t)\ E2(n; s) \ A] = 0: (170)Hence, P[G(t)\ E2(n; s)] � 1�P[A] � CÆ1 (171)The most interesting event is E3. The probability of E3 can becalculated in a similar manner to the probability of E1. For n largeenough��P[E3(n; s)]�P�R \ [s� 2Æ2; (1 + �)s+ 2Æ2] = ;��� � Æ1; (172)which implies���P[E3(n; s)]� Z 1=1+�0 sin��� u��1(1� u)�� du��� � (CÆ1+ C 0Æ2): (173)The constants C and C 0 can be chosen again independent of s. Notealso that the main term does not depend on s.We will now show that P[G(t)\E3(n; s)] is close to P[E3(n; s)]. LetD = D(t; �) be the event that for some y 2 TM" ,tn � inffu : X(u) = yg < t (174)andsn � supfu < inffv > tn : X(v) =2 Dy(2nn��)g : X(u) = yg > t(1 + �):(175)



33Obviously we have that the event fE3(n; s)g n fG(t)\E3(n; s)g is con-tained in the event Ac [ (D \ (fX(t) 6= yg [ fX(t(1 + �)) 6= yg).Lemma 7.4. The probability of the event D intersected with fX(t) 6=yg [ fX(t(1 + �)) 6= yg tends to zero as t tends to in�nity.We use this lemma to �nish the proof of Proposition 7.1. For t largeenough we have putting (169) and (171), into (165) we getP[G(t)]� CÆ1 + C 0Æ1��2 +P[E3(n; s)]: (176)Similarly, we obtain the lower bound (for t suÆciently large)P[G(t)]� P[E3(n; s)]� CÆ1: (177)Since the expression (173) for E3 and also the constants in error termsdo not depend on s, and since Æ1 and Æ2 can be taken arbitrarily small,we have limt!1P[G(t)] = Z 1=1+�0 sin��� u��1(1� u)�� du: (178)This �nishes the proof. �IV. It remains to show Lemma 7.4Proof of Lemma 7.4. It will suÆce to show thatP[X(t) = yjD; tn; y; � ];P[X(t(1 + �)) = yjD; tn; y; � ] (179)tend to one as t tends to in�nity. We will only treat the �rst probability,the proof of the second convergence being entirely similar.The Markov process (X(tn + s) : sn � tn � s � 0), given D; tn; y; �is equal in law to the process (U(s) : s 2 [0; sn � tn]) conditioned onthe event fS > sn � tng where U and S are constructed as follows:(i) U stays at site y for an exponential, mean �y, amount of time,then(ii) with probability p(n), the probability that a random walk start-ing at y escapes D � Dy(2nn��) before returning to site y, the processterminates and S is the termination time. With probability 1 � p(n)the process U performs an excursion away from y conditioned not toleaveD. At the end of the excursion it returns to y and step (i) resumesand so on.The important point is that the number p(n) is of order 1=n while(recall y 2 TM" ) the mean time spent at y per visit exceeds "2n=�=n.Thus the conditioning event has probability bounded below by C("; �).Hence it will suÆce to show that P[�U(t � tn) 6= yj� ] tends to zero ast tends to in�nity � -a.s. where process ( �U(u) : u � 0) is a Markovprocess that alternates staying at site y an exponential amount of timewith mean �y and performing excursions away from y conditioned tostay within D (again staying at each site a time according to � ).We �rst show that � -a.s. for t (and therefore n) suÆciently large,the expected duration of a conditioned excursion from y is very small



34compared to �y uniformly over possible y 2 TM" . It is easy to provethat in the neighbourhood of y there are only traps shallower than"n�5=(1��)2n=�=n. Indeed, as in the proof of Lemma 5.6, letB(y) = ny 2 TM" ;9x 2 D; �x � "n� 51�� 2n=�n o: (180)Then, P[B(y)]� C2nn��n2�n 5�1��22n : (181)The summation over all sites in D (n) givesPh [y2D(n)B(y)i � Cn1+���n 5�1�� (182)and the claim follows easily by the Borel-Cantelli lemma taking � largeenough.Next, we estimate the expected number of visits to z 2 D n fygduring an excursion that does not leave the disk. It is a well knownfact that the expected number of visits of z 2Z2 by the simple randomwalk during one excursion from the origin is equal to one. So,1 = E [# visits of z]= E [# visits of zjXd does not leave D]P[Xd does not leave D]+ E[# visits of zjXd leaves D]P[Xd leaves D]: (183)It follows that for n large enoughE[# of visits of zjXd does not leave D]� �P[excursion does not leave D]��1� (1�GD(2nn��)(0; 0)�1)�1 � 1 + C=n � 2: (184)The expected duration of the i-th excursion, Vi, thus satis�esE[Vi ] � 2 Xz2Dnfyg �z � 2 Xz2D(n) �z�f�z � n�5=(1��)"2n=�=ng: (185)The last sum can be bounded using Lemma 3.2. Let i2(n) be such that2�i2(n) � n�5=(1��) � 2�i2(n)+1. Then, a.s. for n largeE[Vi ] � 2Xz2D �z�f�z � 2g + 2 i0(n)Xi=i2(n) Xz2T "2�i+1"2�i �z� 4 � 2nn1�� + 2 i0(n)Xi=i2(n) "2n=�n 2�i+1��T "2�i+1"2�i ��� 4 � 2nn1�� + C2n=� i0(n)Xi=i2(n) 2�(1��)i � C2n=�n�5: (186)



35Since the expected number of excursions of �U before time (1 + �)tis bounded by a multiple of n, the mean of the total time spent by �Uduring the interval [0; (1+�)t+2n=�=n2] away from y is easily boundedby C2n=�n�4 for C depending on " but not on t.We claim that (for n suÆciently large) for any u 2 [0; (1 + �)t],P[�U(u) 6= y] � 2C=n2: Suppose not. Then for some u0, P[Y (u0) 6= y] �2C=n2. We have that the expected total time spent by �U away from yin interval [u0; u0 + 2n=�=n2] is bounded by C2n=�n�4, so there existsv0 2 [u0; u0 + 2n=�=n2] so that P[�U(v0) 6= y] � C=n2: On the otherhand, by the Markov property for �U if � is the time of the �rst jumpfrom yP[�U(v0) 6= y] � P[�U(v0) 6= y \ f� > v0 � u0g]> 12P[�U(u0) 6= y] � C=n2: (187)for n suÆciently large. This contradiction gives the desired result andwith it the lemma is proven. �8. Proof of subagingIn this section we prove the subaging behaviour of the function�(tw; tw + t). Recall that this function has been de�ned as the proba-bility that X does not jump between tw and tw+ t. If we know that attime tw the process X is in a trap y with depth �y, then this probabilityis easy to obtain, by the Markov propertyP�X(t0) = X(t)8t0 2 [tw; tw + t]���X(tw)� = exp�� t�X(tw)�: (188)We should thus gain an information about the depth �X(tw). We wouldlike to deduce its distribution from the behaviour of processes ~Y n and~Y , because these are the only objects we really control. It should beobvious that the depth of the trap where X is at time tw depends onthe size of the jump of ~Y n that intersects the level tw=2n=�. Hence,to �nd an expression for the function �(tw; tw + t) we should controltwo basic objects. First, the distribution of the size of the jump of ~Y nthat intersect certain level, and second, the conditional distribution of�X(tw) knowing the size of this jump.We start by controlling the size of the jump. Let `n = `n(s) be thesize of the jump of ~Y n that intersect the level s,`n(s) = inffx 2 Rn : x > sg � supfx 2 Rn : x � sg; (189)and let ` = `(s) be the same size for the limiting process ~Y . We use�ns , resp. �s to denote the distributions of `n(s) and `(s).



36 The following lemma is a consequence of Proposition 6.5 and the P-a.s. continuity of the functional Y ! inffx 2 R(Y ) : x > sg� supfx 2R(Y ) : x � sg in the Skorokhod topology on D([0;1)).Lemma 8.1. The sequence �ns converges weakly to �s uniformly ins 2 [1; 21=�], that is for every bounded continuous function gZ g(`)�ns (d`) n!1���! Z g(`)�s(d`) uniformly in s 2 [1; 21=�].(190)As a consequence of the scaling invariance of ~Y (recall that ~Y is astable subordinator) we get the following relation between the measures�s, �s([a; b]) = �1([a=s; b=s]) (191)for any interval [a; b] � (0;1).The control of �X(tw) knowing the size of the jump is more compli-cated. It occupies the majority of the proof of the following propositionthat is a re�ned version of Theorem 1.2.Proposition 8.2. For P-a.e. realisation of the environment � ,limt!1��t; t+ �tlog t� = Z 10 � `�`� + ���1+��1(d`) � �(�): (192)By an easy application of dominated convergence theorem we getCorollary 8.3. The function �(�) satis�eslim�!0�(�) = 1 and lim�!1�(�) = 0: (193)Proof of Proposition 8.2. We proceed similarly as in the proof of aging.We take n(t) as in (150) and we de�ne s = s(t) = t=2n(t)=�. Next,we choose Æ1 and Æ2, and we set the constants ", M and m in thesame manner as before. We thus know that the process ~Y n is a goodapproximation of the rescaled time change �Sn. That means that P[A] =P[A1 \ A2] � 1 � CÆ1 with A1, A2 de�ned as in the previous section.For the following discussion we will suppose that A occurs and we takeaccount of the remaining part of the probability space at the end ofthe proof.As we have already discussed, it is necessary to obtain the conditionaldistribution of �X(t) knowing `n(s). Similarly as in the proof of agingnot much can be done if the distance between s and Rn is smaller than2Æ2, because the approximation is not suÆciently precise. However, theprobability of this bad case can be bounded by CÆ1+C 0Æ1��2 uniformlyin s in the same way as in (169).Let E = E(n; s) denote the event dist(s;Rn) > 2Æ2. If E occurs,then the situation is more favourable. We know that X was at time t



37inside a disk Dy(2nn��) around some deep trap y = y(n; s). Moreover,similarly as in Lemma 7.4, we can showP[X(t) = y(n; s)jE(n; s)]! 1 as t!1: (194)We will thus compute the conditional distribution of �y(n;s) knowing`n(s) instead of the distribution of �X(t). As we have already discussedin the proof of Lemma 6.4, the size ` of the jump that is the result ofthe visit of y satis�es 2n=�` = �y �Xi=1 e0i; (195)where � is a geometrically distributed random variable with meanGD(2nn��)(0; 0) = n log 2=� + o(n) = K0n+ o(n); (196)and e0i are i.i.d., exponential random variables with mean one. It isconvenient to introduce the rescaled depth of trap, �x = �xn=2n=�.Equation (195) then becomes̀ = �yn �Xi=1 e0i: (197)As can be seen from Lemma 6.1, the distribution �n of �y convergesweakly to the distribution � given by�(dx) = �"�� �M�� � 1x�+1 dx for " � x �M: (198)The random variable n�1P�i=1 e0i is an exponential random variablewith mean K0 + o(1). Let fn denote its density, and let f denote thedensity of the limiting distribution,f(x) = exp �� x=K0�=K0: (199)We use F ǹ to denote the distribution function of �y(n;s) conditionallyon `n(s) = `, F ǹ(a) = P[�y(n;s) � aj`n(s) = `]: (200)Lemma 8.4. The function F ǹ can be written asF ǹ(a) = R a" 1xfn( x̀)�n(dx)RM" 1xfn( x̀)�n(dx) (201)Proof. We should verify that for any event B that is measurable withrespect to the �-algebra generated by the random variable `n(s)ZB �f�y � agdP= ZB F ǹ(a) dP: (202)



38It is suÆcient to verify the last expression for an event B that has theform f`n(s) 2 Ig for some interval I � [0;1). The left hand sideof (202) can be then written asZB �f�y � agdP= Z a" ZI=x fn(z) dz �n(dx): (203)To compute the right hand side we should �rst �nd the distributionof `n(s) P[`n(s) � u] = Z M" Z u=x0 fn(z) dz �n(dx): (204)The right hand side of (202) then equalsZI R a" 1xfn( x̀)�n(dx)RM" 1xfn( x̀)�n(dx) d�Z M" Z `=x0 fn(z)dz �n(dx)�= ZI R a" 1xfn( x̀)�n(dx)RM" 1xfn( x̀)�n(dx)�Z M" 1xfn(`=x) �n(dx)� d`: (205)Making the substitution z = `=x and changing the order of integrationit is easy to get the same expression as in (203). This �nishes theproof. �As an consequence of the previous lemma we getLemma 8.5. For any bounded continuous function gZ g(a)dF ǹ(a) n!1���! Z g(a)dF`(a); (206)where F`(a) = R a" z���2 exp(`=K0z)dzRM" z���2 exp(`=K0z)dz : (207)Moreover, if K � (0;1) compact and g has bounded �rst derivative,then the convergence is uniform in ` 2 K.Proof. It is easy to show using the weak convergence of �n and proper-ties of fn that the nominator, resp. the denominator of (201), convergeto Z b" 1xf� x̀� �(dx); (208)with b = a resp. b = M . Inserting (198) and (199) into the lastexpression we getZ b" 1xf� x̀� �(dx) = Z b" z���2 exp(`=K0z) dz; (209)which proves the pointwise convergence. The uniform convergence canbe then proved using standard methods. �



39We have now all ingredients to �nish the proof of Proposition 8.2.Let G = G(t) denote the eventG = �X(t0) = X(t)8t0 2 [t; t+ �t= log t]	: (210)Then,P[G] = Z 10 P[Gj`n(s) = `]�ns (d`)= Z 10 P[Gj`\ (A \ E)]�1 �P�(A \ E)cj`���ns (d`)+ Z 10 P[Gj`\ (A \ E)c]P[(A\ E)cj`]�ns (d`) = (211)The second integral can be bounded by P[(A\ E)c] � CÆ1 + C 0Æ1��2 .The �rst one can be bounded from above byZ 10 P[Gj`\ (A \ E)]�ns (d`) � I(t) (212)and from below by I(t)� CÆ1 � C 0Æ1��2 . We should thus compute thevalue of I(t). Using (188) we getI(t) = Z 10 Z M" exp�� �tna2n=� log t�dF ǹ(a)�ns (d`): (213)Taking t = s2n=� we getI(s2n=�) = Z 10 Z M" exp�� �s�a log 2 + cn�1 log s�dF ǹ(a)�ns (d`): (214)It is not diÆcult to show using Lemmas 8.5 and 8.1, uniformly fors 2 [1; 21=�],limn!1 I(s2n=�) = Z 10 Z M" exp�� �s�a log 2�dF`(a)�s(d`) � I1(s): (215)Inserting (207) into (215) we getI1(s) = Z 10 Z M" exp�� �s�a log 2� a���2 exp(�`=K0a)RM" z���2 exp(`=K0z) dz da�s(d`):(216)For any c > 0 the integral R10 exp(�c=z)z���2 dz = c���1�(�+1). Weintroduce the following notation. Letgc(";M) = 1�(� + 1)�Z "0 +Z 1M �e�c=zz���2 dz; (217)and d1 = �s�log 2 + K̀0 and d2 = K̀0 : (218)Then I1(s) = Z 10 d���11 � gd1(";M)d���12 � gd2(";M)�s(d`): (219)



40The di�erence between I1(s) and J(s) � R10 (d2=d1)1+��s(d`) is smallfor " small and M large. To see this considerlim"!0M!1 I1(s)= lim"!0M!1 �Z d���11d���12 � gd2(";M)�s(d`)�Z gd1(";M)d���12 � gd2(";M)�s(d`)�:(220)Both terms converge due to the monotone convergence theorem, �rstone to J(s) and second one to 0 uniformly in s. From the scalingrelation (191) we get that J(s) actually does not depend on s,J(1) = Z 10 � `�`� + ���1+��1(d`): (221)Since " ! 0 and M ! 1 when Æ1; Æ2 ! 0, there exists a functionh(Æ1; Æ2) such that h(Æ1; Æ2)! 0 as Æ1; Æ2 ! 0 satisfying jI1(s)�J(1)j �h(Æ1; Æ2) for all s. Using this, (215), (220), and the bounds in theparagraph after (211) we get that for n larger than some n(Æ1; Æ2) andfor any s 2 [1; 21=�]��P[G(s2n=�)]� J(1)�� � �CÆ1 + C 0Æ1��2 + h(Æ1; Æ2)�: (222)Since Æ1 and Æ2 can be taken arbitrarily small, the proof is �nished. �Appendix A. Some properties of the simple random walkWe summarise here some known properties of Green's function andhitting probabilities of the simple random walk on Z2 that is killedwhen it exits the disk D with radius r. Let � denote the exit time fromthis disk.The most important formula that we use repeatedly isP[X hits x before �] = 1� log jxjlog r +O� jxj�2log r �+O(log�2 r): (223)The proof of it can be found for example in Lawler [Law91], Proposi-tion 1.6.7. We use also a similar expansion for the Green's function,GD(0; x) = 2� (log r � log jxj) +O(jxj�2) +O(r�1): (224)For GD(0; 0) there is the following formula ([Law91], Theorem 1.6.6)GD(0; 0) = 2� log r + k +O(r�1): (225)As an easy consequence of formula (223) we get following lemma:Lemma A.1. Let y be an uniformly chosen point in D. Then thereexists constant C and b < 1 independent of r such thatE� exp �b log rP[X hits y before �]�� � C: (226)



41Proof. Let a be a positive constant and let Da denotes the disk withradius a. Then by (223) we haveE� exp �b log rP[X hits y before �]��� 1�r2 Xy2Da exp(b log r) + 1�r2 XDnDa exp �b log rP[X hits y before �]�� Cr2�b + 1�r2 Xy2DnDa expfb log r � b log jyj+O(jyj�2) +O(log�1 r)g� C + 1�r2�b Xy2DnDa Cjyjb � C + Crb�1 Z ra y�b dy � C: (227)This �nishes the proof. �Similarly we getLemma A.2. There exist � > 0 and C independent of r such thatE[exp(�GD(0; y))] � C: (228)Appendix B. Some properties of stable subordinatorsLet Y be a stable subordinator with the L�evy measure�(dx) = kx���1�fx � 0g dx; k > 0: (229)We use R = R(Y ) to denote the range of this process. Let U(dx)denote its potential measure that is de�ned byU(A) = Z 10 P(Y (t) 2 A) dt for any A 2 B(R): (230)For every x > 0, let g(x) = supfy 2 R : y � xg; (231)and let d(x) = inffy 2 R : y � xg: (232)Then it follows from Bertoin [Ber96], Theorems III.2, III.6, and thediscussion following the second theorem thatLemma B.1. (i) For each �xed x � 0 and every 0 � y � x < z, wehave P(g(x) 2 dy; d(x) 2 dz) = U(dy)�(dz � y): (233)(ii) For every x > 0 the random variable x�1g(x) has the distributions��1(1� s)���(�)�(1 � �) ds = sin��� s��1(1� s)��ds (0 < s < 1): (234)
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