
Quantitative Synthesis for Concurrent
Programs

Pavol Černý, Krishnendu Chatterjee, Thomas A. Henzinger, Arjun
Radhakrishna and Rohit Singh

IST Austria (Institute of Science and Technology Austria)

Am Campus 1

A-3400 Klosterneuburg

Technical Report No. IST-2010-0004

http://pub.ist.ac.at/Pubs/TechRpts/2010/IST-2010-0004.pdf

October 7, 2010

CORE Metadata, citation and similar papers at core.ac.uk

Provided by IST Austria: PubRep (Institute of Science and Technology)

https://core.ac.uk/display/268226300?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://pub.ist.ac.at/Pubs/TechRpts/2009/IST-2009-002.pdf

Copyright © 2010, by the author(s).

All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or
distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. To copy otherwise, to republish, to post on
servers or to redistribute to lists, requires prior specific permission.

Quantitative Synthesis for Concurrent Programs

Pavol Černý Krishnendu Chatterjee Thomas A. Henzinger Arjun Radhakrishna Rohit Singh
IST Austria IST Austria IST Austria IST Austria IIT Bombay

Abstract
We present an algorithmic method for the synthesis of concurrent programs
that are optimal with respect to quantitative performance measures. The in-
put consists of a sequential sketch, that is, a program that does not contain
synchronization constructs, and of a parametric performance model that as-
signs costs to actions such as locking, context switching, and idling. The
quantitative synthesis problem is to automatically introduce synchroniza-
tion constructs into the sequential sketch so that both correctness is guaran-
teed and worst-case (or average-case) performance is optimized. Correct-
ness is formalized as race freedom or linearizability.

We show that for worst-case performance, the problem can be modeled
as a 2-player graph game with quantitative (limit-average) objectives, and
for average-case performance, as a 2 1

2
-player graph game (with probabilis-

tic transitions). In both cases, the optimal correct program is derived from an
optimal strategy in the corresponding quantitative game. We prove that the
respective game problems are computationally expensive (NP-complete),
and present several techniques that overcome the theoretical difficulty in
cases of concurrent programs of practical interest.

We have implemented a prototype tool and used it for the automatic syn-
thesis of programs that access a concurrent list. For certain parameter val-
ues, our method automatically synthesizes various classical synchronization
schemes for implementing a concurrent list, such as fine-grained locking or
a lazy algorithm. For other parameter values, a new, hybrid synchronization
style is synthesized, which uses both the lazy approach and coarse-grained
locks (instead of standard fine-grained locks). The trade-off occurs because
while fine-grained locking tends to decrease the cost that is due to waiting
for locks, it increases cache size requirements.

1. Introduction
Developing concurrent programs that harness the power of modern
multi-core machines is a difficult and error-prone task, as witnessed
by a number of errors found in published algorithms [6, 21], and in
production code (see e.g. [7]). We focus on partial program syn-
thesis, where the programmer specifies the sequential parts of the
program, while leaving out the synchronization mechanisms. The
synthesis algorithm automatically chooses the right synchroniza-
tion mechanisms to ensure correctness of the resulting program. We
apply this approach to concurrent data structure implementations.
Here, on one hand it is easier to program the sequential accesses to
the data structure in imperative style than to provide a declarative
specification. On the other hand, it is easier to specify the concur-
rency aspects of correctness (for example, requiring race freedom
or linearizability) than to insert synchronization constructs manu-
ally. Thus the partial program synthesis makes best of both worlds
available to the programmer.

Example. We illustrate why performance measures are necessary in
synthesis. Consider two threads accessing a buffer with 2 cells. The
buffer consists of two cells, x and y. The value 0 indicates that a cell
is empty. The threads can call the store method which checks if
one of the cell of the buffer is empty, and if so, stores the input
value in an empty cell and returns true. If both of the cells are
full, store returns false. Conversely, a the method load, returns
a value of a nonempty cell, if one of the cells is nonempty and
returns 0 otherwise.

A sequential sketch for store is in Figure 1. The programmer
specifies that synchronization would be performed using locks, but

choice C1 : {global.lock(); xlock.lock(); ylock.lock();
global.unlock(); xlock.unlock(); ylock.unlock();skip;}

public boolean store(byte input)
1: choice C1; //should be global.lock() or xlock.lock();
2: if (x == 0)
3: x = input;
4: choice C1; //should be global.unlock() or xlock.unlock()
5: return true
6: choice C1; //should be skip or xlock.unlock()
7: choice C1; //should be skip or ylock.lock()
8: if (y == 0)
9: y = input;
10: choice C1; //should be global.unlock() or ylock.unlock()
11: return true
12: choice C1; //should be global.unlock() or ylock.unlock()
13: return false

Figure 1. Producer-Consumer Sketch

does not specify how and when to lock/unlock, and whether to use a
global lock, or fine-grained (cell-local) locks. The sequential sketch
for load is similar to the sketch of store method. We require data-
race-freedom, i.e., there should not be two potentially simultaneous
accesses to the same location, with one of them being a write
access.

Examining the sketch in Figure 1, we see that the sketch allows
three types of implementations. We describe a representative of
each category.
• incorrect implementations: implementation S1 that does not use

any locks. This leads to data races on both x and y. (Other
incorrect implementations might leave some lock locked.)

• global locking: implementation S2 obtained by choosing
global.lock() at line 1, global.unlock() at lines 4, 10
and 12, and skip at other choice locations.

• cell-local locking: implementation S3 obtained by choos-
ing xlock.lock() at line 1, choosing xlock.unlock() at
lines 4 and 6, choosing ylock.lock() at line 7, choosing
ylock.unlock() at lines 10 and 12.
However, the two correct implementations are not equivalent

with respect to performance in all cases. We try to distinguish and
choose between them using a performance model. In order to define
a performance model, we first specify what (concurrency-related)
events will be taken into account: for this example we choose lock
access (locking or unlocking) and idling (the oppurtunity-cost of
not using an available processor). We consider two performance
models: model P1 which assigns a cost c to idling, and a cost 0 to
lock access, and a model P2 which assigns a cost 0 to idling and a
cost c to lock access.

If the performance model is P1, implementation S3 which al-
lows more concurrency by using fine-grained locks will perform
better than S2 which uses a global lock. However, under perfor-
mance model P2, the situation would be reversed — S2 uses fewer
locks and therefore performs better. Therefore for performance
model P1, the synthesizer should return S3 as its result, and for
performance model P2, the synthesizer should return S2 as its re-
sult.

In general, performance measures need to include a (rudimen-
tary) model of the architecture of the target machine, and different
implementations might be more or less suitable for a particular ar-

1 2010/7/17

chitecture. For example, if we assume a two-core processor, the
performance damage from using global locks might not be high
enough to justify using fine-grained locks, which has a higher cache
requirement and lowers performance gains obtained from per core
cache. Hence a synthesis framework should support quantitative,
performance-related objectives for synthesis.

Methods. In this paper, for the first time, we synthesize concurrent
implementations of data structures with respect to quantitative per-
formance models. The input consists of (1) a sequential sketch, (2)
a performance model, (3) a usage model, (4) a scheduling model,
and (5) a bound on the size of the client programs. The sequen-
tial sketch is a sequential implementation of a data structure in the
form of a set of methods that access shared variables or shared
heap. The sequential sketch leaves out synchronization code but
includes “holes”, which are to be filled in by the synthesizer using
a specified set of synchronization constructs. We say that a pro-
gram is allowed by a sketch if it can be obtained by filling holes of
the sketch by synchronization constructs. We distinguish between
finite sketches (sketches with finite memory), and heap-accessing
sketches (sketches that access a shared singly-linked heap with po-
tentially unbounded size). The heap-accessing sketches we con-
sider are required to satisfy the constraints of the method automa-
ton model introduced in [8]. This enables us to develop algorithmic
analysis for correctness and performance.

The second input to the synthesis problem is a performance
model, given by a weighted automaton. The automaton has edges
for actions, and assigns different costs to actions such as locking,
idling and context-switching. The automaton model allows to as-
sign costs based on past sequence of actions, for example, if a
context-switch happens soon after the preceding one, then its cost
might be lower. Thus our model allows to specify complex cost
models, e.g. cache access. The third input, usage model specifies
how frequently each method of the sequential sketch will be used.
For example, for the case of a set based data structure with con-
tains, add and remove methods, it is known [17] that in practice,
the contains method is called 90% of the time, add 9% and re-
move 1%. Providing this information to the synthesizer enables it
to prefer implementations that give better performance to the con-
tains method. The fourth input is a scheduling model that every
time schedules one of the the active threads. Our schedulers are
state-based models, and hence support flexible scheduling schemes
(e.g., a thread waiting for long may be scheduled with higher prob-
ability). In performance analysis, the average-case analysis is as
natural as worst-case analysis. For the average-case (randomized)
analysis, a probabilistic scheduler is needed.

The fifth input, the bound on the size of clients, specifies which
clients (programs that access the data structure) the synthesizer
considers. We consider two cases: (1) For finite sketches, our ap-
proach limits the clients to have a statically bounded number of
threads but we allow clients where each thread can call an un-
bounded number of methods. The bound on the size of clients is
therefore given by (n), the number of threads and the synthesis the
considers the most general clients on n threads. The most general
client on n threads is one in which every thread executes any num-
ber of the methods in any order. (2) For heap-accessing sketches,
we allow clients with only a bounded number (n) of threads, and
furthermore, each thread can call only a bounded number (m) of
methods. More general clients for heap-accessing sketches are not
considered as checking linearizability for such clients is undecid-
able [8]. Correctness is specified using one of two generic condi-
tions in our approach: data-race-freedom and linearizability. Data-
race freedom for finite state sketches and can be specified using an
assertion on the global state space. For heap-accessing sketches P ,
checking linearizability can be reduced to checking reachability on
a finite-state system via a lockstep construction [8]. The correctness

Worst Case Average Case
(Nondeterministic Scheduler) (Probabilistic Scheduler)Sketch

Client
Transition System MDPVerification

(Safety)

PI Game PI Prob. GameQualitative
Synthesis

PI Quant. Game

Perf. Model

PI Prob. Quant. GameQuantitative
Synthesis

Figure 2. Synthesis Flow, where PI stands for Partial Information
check is performed on clients with a bounded number of threads
each of which calls a bounded number of methods. However, we
prove a cut-off theorem for a class of programs (that includes our
main case study of concurrent list implementations). It shows that
in order to check linearizability for programs with an unbounded
number of threads, it is sufficient to check clients with 2 threads
each of which calls 1 method.

The output of synthesis is an implementation P of the concur-
rent data structure, such that (a) it is allowed by the sketch, (b) it is
correct with respect to clients conforming to the bound, and (c) it
has the best performance of all programs satisfying (a) and (b) with
respect to the performance, usage and scheduling models.

The flow for quantitative synthesis is illustrated in Fig 2. Given
a sketch and a client, we obtain a transition system model. In
presence of probabilistic schedulers we require the more general
model of Markov decision processes that have probabilistic transi-
tions. The probabilistic scheduler is necessary to model the average
case performance. We then show that the problem of synthesis of
sketches is naturally modeled as a two-player partial-information
game: one player is the synchronizer who picks the synchronization
constructs offered in the sketch and the opponent player chooses
the worst possible input and schedules. In presence of probabilistic
schedulers we require partial-information games with probabilis-
tic transitions. We then show that the performance-aware synthe-
sis problem can be solved through optimal strategies of partial-
information games with quantitative objectives (limit-average or
mean-payoff objectives). If the game graphs are unbounded (as is
the case for heap-accessing model), then we show how to extend the
correctness of lock-step construction from transition systems with
qualitative objectives [8] to games with quantitative objectives. The
quantitative synthesis problem gives rise to a new game theoretic
problem and we show that the problem is NP-complete.

We present several techniques that overcome the theoretical dif-
ficulty of NP-hardness, and works well for the class of examples we
study. Our first step is an optimized version of the lock-step reduc-
tion that significantly reduces the state space of the game graphs,
and this key step makes the synthesis feasible in practice. Our sec-
ond steps are efficient strategy elimination techniques: (a) our first
elimination is based on a light-weight partial correctness check for
strategies, by which we are able to reduce the set of strategies sig-
nificantly; (b) the second elimination is based on counter-example
analysis: if we obtain a counter-example to witness that a strategy
is not a correct solution, we use the counter-example to rule out
further strategies to be explored. With the above two methods we
prune the strategies by three-orders of magnitude.Our third step is
novel algorithmic and practical optimization techniques for quanti-
tative evaluation of correct strategies. For quantitative analysis we
require solution of MDPs with quantitative objectives. Our example
MDPs were very large, but sparse, and we came up with optimiza-
tion techniques for the special class of our MDPs that lead to an
order of magnitude of improvement in the running time.
Results. In order to evaluate our synthesis algorithm, we have im-
plemented a prototype tool and applied it to a finite sketch example
of producers and consumers accessing a buffer, and to two heap-

2 2010/7/17

accessing sketches of concurrent lists. In all of the examples, the
sketch considered can give rise to incorrect programs, correct-but-
inefficient programs, and correct-and-efficient programs. The per-
formance parameters that we used for these examples were the
cost of locking, cost of idling, and cost of a context-switch. For
list sketches, our method automatically synthesizes classical syn-
chronization schemes for implementing a concurrent list, such as
fine-grained locking or a lazy algorithm for certain relative costs of
parameters. For other parameter values, a new, hybrid synchroniza-
tion style is synthesized, which uses both the lazy approach and
coarse-grained locks (instead of standard fine-grained locks).

Summary. We summarize our main contributions: (1) (a) we show
how to use game theoretic framework to model the synthesis of
concurrent programs (to the best of our knowledge, this is the first
application of partial-information games for synthesis of concur-
rent data structures); (b) we explicitly use generic performance, us-
age, and scheduling models, and thus provide a very flexible frame-
work for synthesis with quantitative measures of performance; and
(c) we show how games with quantitative objectives provide solu-
tion to the synthesis problem of our framework. (2) We present a
cut-off theorem for linearizability of concurrent lists with locks that
enables reducing the problem of checking linearizability for pro-
grams with unbounded number of threads to checking linearizabil-
ity programs with bounded number of threads, where each thread
calls only a bounded number of methods. (3) We present opti-
mized abstraction techniques for state space reduction for our game
graphs, and present several novel algorithmic and practical opti-
mization techniques for our MDPs with quantitative (limit-average)
objectives. (4) We have implemented a prototype and applied it to
case studies of synthesizing implementations of concurrent lists.
Further technical proofs and details omitted due to lack of space
can be found in [1].

Related works. The problem of synthesis from specification was
originally posed by Church [10]. Synthesis for synchronization
constructs is also an old problem and the celebrated paper [11]
presented an algorithm for synthesis of synchronization skeletons.
Synthesis of reactive systems was considered in [22]. In contrast to
our work, all these works focused on qualitative synthesis without
any performance measure. Recent works have considered quantita-
tive synthesis [5, 9], however the focus of these works has been the
synthesis of sequential systems from temporal logic specifications.

Sketching for bounded domains programs and concurrent data
structures has been studied in [25] and [24] respectively. However,
none of the above works consider performance-aware algorithms.
Abstract interpretation based synthesis was presented in [27], and
is only optimal with respect to the number of interleavings.

Verifying correctness of concurrent data structures has received
a lot of attention recently. For example, [20], unlike this work
and [8], considered only a bounded heap. Static analysis methods
based on shape analysis [3, 23] are not completely automated.
A recent approach by [26] automatically is able to linearizability
for unbounded heaps and threads but, reports limited success with
concurrent lists.

The inclusion of the usage model in our synthesis algorithm
was inspired by works which introduced concurrent set algo-
rithms [16, 17], where the performance of the algorithms is ana-
lyzed for various usage models.

2. Method Sketches
We define a model for programs accessing shared memory, either
bounded or unbounded (consisting of a bounded number of boolean
variables or consisting of an unbounded heap). Method sketches are
an extension that adds nondeterministic sketch states to the method

s1 s2 s3 s4

s5

s6

d1 d2 d3 d4

d5

d6

head
o

p0p1

q
MA

h v2 v3 v4

v5

v6

Figure 3. Singly-linked data heap and a method automaton
automaton model introduced in [8]. We recall here basic definitions
and notations. We refer the reader to [8] for more details.
Singly-linked data heaps. LetD be an unbounded set of data values
equipped with equality and linear order (D,=, <) and let Σ be
a finite set of symbols. A singly-linked data heap L is a tuple
(V,next ,flag , data, h), where V is a finite set of vertices, next is
a partial function from V to V , flag is a function from V to Σ, data
is a function from V to D, and h ∈ V is the initial (head) vertex.
The heap L can be naturally viewed as a labeled graph with edge
relation next .L is well-formed if this graph has no cycles reachable
from h. Figure 3 shows an example heap with six vertices.
Method sketches. A method sketch M is a tuple
(Q,Sk , B, PV,DV , T, q0, F, head , OC), where Q is a fi-
nite set of locations, Sk is a subset of Q, B is a finite set of
shared boolean variables, PV is a finite partially-ordered set of
pointer variables, DV is a finite set of data variables, T is a set
of transitions (explained below), q0 ∈ Q is the initial location,
F ⊆ Q is a set of final locations, head is a pointer constant, and
OC is a set of pointer constants. The set of transitions T is a set of
tuples of the form (q, g, a, q′), where q, q′ ∈ Q are locations, g is
a guard, and a is an action. There are no outgoing transitions from
the final locations.

A method sketch represents a sketch of a program that operates
on a heap. The set Sk contains locations where the program is
only sketched, that is, these locations contain a number of choice
transitions, several of which can be enabled at a given time. The
locations in Sk are called sketch locations. A method sketch is
called finite if its set of pointers PV is empty (it thus does not
access the heap). A method sketch is called heap accessing if it is
not finite (i.e., PV 6= ∅).

A method automaton is a method sketch with an empty set Sk .
A method automaton M ′ is allowed by a method sketch M if M ′

can be obtained from M by omitting all but one of the outgoing
transitions for all locations from Sk , and by setting the set Sk to
empty set in M ′. A sketch is a set of method sketches. A program
is a set of method automata. A program P is allowed by a sketch
P if each method automaton in P is allowed by a corresponding
method sketch in P .

A method sketch operates on a singly-linked data heap L. The
pointer variables range over V ∪{nil}, where nil is a special value,
and are denoted by p, p0, p1, etc. Let ≤PV be the partial order on
PV . The partial order is required to have a minimum element,
denoted by p0. The variable p0 is called the current pointer, and
the other variables in PV are called lagging pointers. The constant
head points to the vertex h and is shared across method sketches.
The pointer constants in the set OC (denoted by e.g. o, o0, o1) give
method sketches input/output capabilities and are referred to as IO
pointers. The set R of pointers (i.e. pointer variables and pointer
constants) of a method sketch is defined by R = PV ∪ {head} ∪
OC . The data variables in DV range over the domain D.

The guard g include symbol and pointer equality comparison
and data equality and order comparisons. Let succPV successor
relation defined by the partial order ≤PV . The actions consists
of updates to pointers, variables, and flags and the updates must

3 2010/7/17

satisfy the following restrictions: for updates (i) next(p) := p′

and (ii) p := p′, we must have succPV (p′, p). The restriction
succPV (p′, p) enforce that the heap is traversed in a monotonic
manner. This necessitates that pointer variables are statically or-
dered, and the furthest pointer can be assigned to the next of its
vertex, but lagging pointers can be assigned only to a pointer fur-
ther up in this ordering. Fields of vertices, including the next field,
corresponding to lagging pointers can be updated. Also, the three
fields of vertices (flag value, data value, and the next pointer) can
be updated together atomically (this is needed for encoding some
of the Java concurrency primitives). For further details see [8].

We require the actions of a method sketch to satisfy the “One
write before move” (OW) restriction. This restriction states that
there is at most one action modifying flag(p), at most one action
modifying data(p), and at most one action modifying next(p)
performed between two successive changes of the value of the
pointer variable p. The restriction can be enforced syntactically —
we omit the details. We note that the restriction OW holds for every
implementation we have encountered.

A method sketch is deterministic iff given a location that is not
a sketch location and a valuation of variables, at most one transition
is enabled. A method automaton is deterministic iff given a location
and a valuation of variables, at most one guarded action is enabled.
Notice that a method automaton allowed by a deterministic method
sketch is a deterministic method automaton.

Figure 3 shows a method automaton in location q. Its head
pointer points to the vertex h of the heap. A client of the automaton
can store values in the vertex v6 pointed to by the IO pointer o. The
variables p0 and p1 are pointer variables of the method automaton.

Examples. We illustrate the model by showing how it captures
synchronization primitives and other core features of concurrent
data structure algorithms.
• Inserting a vertex. Assume that the position to insert the vertex

has been found - the new vertex pointed by o is to be inserted
between p1 and p0. The transition relation can then include
(q, true,next(o) := p0, q1) and (q1, true,next(p1) := o, q2).

• Locking individual vertices. We can model locking of vertices
using the Σ value. Let us suppose that Σ = {u, l1, l2, . . .}, for
unlocked, locked by thread 1, locked by thread 2, etc. Locking is
captured by the transition: (q0,flag(p) = u,flag(p) := l1, q1)
for thread number 1. Unlocking can be modeled as follows:
(q1,flag(p) = l1,flag(p) := u, q2).

Client programs. A client program composes a finite set of method
sketches (or method automata) sequentially and in parallel. They
are defined by the following grammar rules: E ::= ES | (ES ‖
E) and ES ::= M | (M ; ES), where M is a method sketch
or a method automaton. This corresponds to a number of threads
composed in parallel, with each thread containing a sequential
composition of methods.

Inputs. Given a method sketch M , a triple (L, sB , io), where L is
a singly-linked data heap, sB is a valuation of the shared boolean
variables of B, and io is a valuation of the IO pointers of M is
called an input to a method. A method input is well-formed if L
(interpreted as a graph) is acyclic. In the remainder of the paper,
we will assume that method inputs are well-formed. (For the case
of finite method sketches, there are no special boolean inputs - these
can be directly part of the shared heap.)

Given a client program, its set of inputs is composed of the
(shared) singly-linked data heap L, the valuation of sB boolean
variables, and for each method sketch (or automaton) that is a part
of the client, a valuation of its IO pointers.

Correctness conditions for client programs. The correctness for
client programs that access shared memory is specified using one
of two generic conditions — data-race-freedom and linearizability.

Data race freedom requires that there should not be two potentially
simultaneous access to the same memory location, with at least one
of the two being a write access. We use this condition for finite
method sketches. It can be specified as an assertion on the global
state space. Linearizability [18] is the standard correctness condi-
tion for concurrent data structure implementations. We use lineariz-
ability as a correctness condition for heap-accessing sketches. The
specific instantiation of linearizability that applies to method au-
tomata is described in [8].

Performance automaton. We define a flexible and expressive per-
formance model via a weighted automaton that specifies costs
of actions. A performance automaton W is a tuple W =
(Q,Σ, δ, q0, γ), where Q is a set of states, Σ is a finite alphabet,
δ ⊆ Q × Σ × Q is a transition relation, q0 is an initial location
and γ is a cost function γ : Q × Σ × Q → Q. The labels in Σ
represent (concurrency-related) actions that incur costs, while the
values of the function γ specify these costs. The symbols in Σ are
matched with the actions (edge symbols) performed by the system
to which the performance measures are applied. There is a special
symbol in Σ, denoted by ot, that signifies that no action of the ones
we are tracking occurred. The costs that can be specified in this way
include for example: (i) the cost of locking (ii) the cost of context
switches (iii) idling, that is the penalty paid if a physical core is
idling, due to threads being blocked by locks.

An example specification that uses the three costs mentioned
above is the automaton W in Figure 4. The automaton describes
the costs for specific type of concurrency-related operations (lock-
ing (l), context-switching (cs), and the cost of limiting concurrency.
For the latter, the automaton specifies an idling cost w, i.e. cost of a
thread being prevented from running (by a synchronization mech-
anism), while there is still an unused physical core. The example
assumes there are 4 physical cores, so a thread can block at most
three threads that otherwise could run.

Specifying the costs via a weighted

q0(l, 3) (cs, 2)

(w1, 1), (w2, 2), (w3, 3),
(w4, 3), (ot, 1)

Figure 4. Perf. Aut.

automaton is more general than only
specifying a list of costs. Let us as-
sume that we model the effects of cache
size in the cost of a context switch.
(Note that this is possible, as the ma-
jor part of a context switch costs comes
from cache-related preemption delays.)

Specifying the cost model as an automaton allows for example
specifying that the cost of a context-switch is lower if the number
of steps since the context switch is low, as the performance damage
from cache-related preemption delays is low in this case. There are
other possible events that the performance model can keep track
of, such as use of concurrency primitives other than locks. For the
remainder of this paper we fix the alphabet Σ = {l, cs, w, ot} that
represent locking, context switches, and idling (waiting), however,
our results hold for all deterministic performance automata.

Usage model. Given a sketch P = {M1,M2, . . . ,Mk}, where
M1, . . .Mk are method sketches, a usage model is a function
that for a method sketch Mi in P returns a rational number in
pi ∈ [0, 1], such that Σ1≤i≤kpi = 1. The usage model represents
the relative frequency with which a particular method is called.

3. Games on Graphs for Quantitative Synthesis
In this section we first show how the verification problem of a pro-
gram allowed by a sketch and a client can be modeled as transi-
tion systems, and as Markov decision processes in the presence of
probabilistic schedulers. Then, we show how the synthesis problem
can be modeled as a two-player partial-information game between
the synchronizer and the adversary. We then show the correctness
and performance analysis can be achieved through the solutions of

4 2010/7/17

games with quantitative objectives, in particular, the optimal strate-
gies of games correspond to a correct optimal program with respect
to the performance and usage model. In general, the game graphs
are infinite; we present abstractions to produce finite-state game
graphs, and optimizations to reduce the game graph size to en-
sure synthesis is feasible. We finally study the complexity of these
games, and show the problem is NP-complete.

3.1 Transition systems and MDPs from Programs
First, we present mathematical models of transition systems and
Markov decision processes, and reduce the problem of verification
of concurrent data structures to these models.

Definition 3.1. (Transition systems and Markov decision pro-
cesses). A transition system G = 〈S,A,∆, s0〉 consists of a set
S of states, a finite set A of actions, an initial state s0, and a de-
terministic transition function ∆ : S × A → S that given a state
s and an action a gives the successor state ∆(s, a). The graph
(S,E) of the transition system consists of the set S of states, and
the set E = {(s, t) | ∃a ∈ A. ∆(s, a) = t} of edges con-
sists of the transitions. Let D(S) denote the set of probability dis-
tributions over S. Markov decision processes (MDPs) generalize
transition systems with probabilistic transition function: an MDP
G = 〈S,A,∆, s0〉 consists of the same components as a transi-
tion system, and ∆ : S × A → D(S) is a probabilistic transition
function that given a state s and an action a gives the probability
distribution ∆(s, a) over the successor states. The graph (S,E)
associated with an MDP consists of the set S of states, and the set
E = {(s, t) | ∃a ∈ A. ∆(s, a)(t) > 0} of edges consists of the
positive probability transitions.

Transition systems and MDPs from method automata and clients.
Given a set of method automaton, a client and an initial state of
the shared-memory, we define below the transition system of the
program. The transition system is defined on the state space that
is the set of all combined program and shared-memory states. In
presence of probabilistic schedulers we will obtain MDPs.

Definition 3.2. Given a program P , a client (method expression)
C = ((C1,1 ; . . . C1,k1) ‖ (C2,1 ; . . . C2,k2) ‖ . . . ‖ (Cn,1 ;
. . . Cn,k2)) for the program, and the set I of inputs for the methods,
the transition system [[P,C, I]] is as follows:

1. State space. The state space of the transition system is the
product of (i) the locations of the method automataCi,j , (ii) the
state space of local variable of Ci,j and (iii) the set of heap
configurations. The initial state is the state where the local
variables of all Ci,j are uninitialized, the locations of Ci,j are
the initial locations, and the heap is in the initial state specified
by I .

2. Actions. The set A of actions of the transition system is the set
of number of threads, i.e., {1, 2, . . . , n}.

3. Transition function. Given an action i, there is a transition edge
from state s to t iff there is a method automaton Ci,j and its
guarded action (q, g, a, q′) such that
(a) for all j′ < j, Ci,j′ is in the final location in s, i.e., all

the automata in the sequential composition beforeCi,j have
finished execution,

(b) the guard g is true in s and the state of Ci,j is q, and
(c) the action a of method automata updating the state s pro-

duces t and the location of Ci,j is q′.

Schedulers. We now describe the role of schedulers in the execution
of program-clients. Informally, a scheduler has a finite set of inter-
nal memory statesQ. At each step, it considers all the active threads
and chooses one either (i) non-deterministically (non-deterministic

schedulers) or (ii) according to a probability distribution, which de-
pends on the current internal memory state. We now describe how
transition systems with probabilistic schedulers gives Markov de-
cision processes. Given a transition system [[P,C, I]] and a sched-
uler Sch with states Q, we obtain the MDP [[P,C, I , Sch]]P as
follows: The states of [[P,C, I , Sch]]P are the product of the states
of [[P,C, I]] and Q. From a state (s, q) of [[P,C, I , Sch]]P , the
transition to (s′, q′) is possible (i.e., with positive probability) if
there exists an i such that (a) when the program step corresponding
to thread i operating on s produces s′, and (b) scheduler Sch can
schedule thread i and change its internal memory state to q′. The
transition probability is the probability of Sch scheduling thread i
in internal memory state q.

3.2 Partial-information Games from Sketches
Synthesis and games. The formal correctness analysis of a program
P , a client expression, the inputs, and scheduler gives us the mod-
els of transition systems and Markov decision processes for verifi-
cation. The more general problem of synthesis (automatically ob-
taining P from a sketch P) is solved through a two-player game
played on transition systems. Given a sketchP and a client (method
expression) C, the two-player game is played on a transition sys-
tem obtained in a similar fashion as [[P,C, I]], the only difference
is that there are choices for synchronization that can be chosen,
and then executed. The two-players in the game graph are the syn-
chronizer (Player 1) who makes choices for the synchronization,
and the adversary (Player 2) who makes choices for the inputs
(and also for the scheduler if the scheduler is non-deterministic).
In the game graph, there are several states that correspond to the
same choice for Player 1. For example, two states may differ in
the state of the local variables in a thread, but the thread loca-
tion can be the same sketch location in both states. Hence, for a
set of states Player 1 must make the same choice: this is modeled
through an observation mapping, that maps states to observations,
and given an observation, Player 1 must make the same choice. The
choice for Player 2 at every state can be different. This gives rise
to the notion of partial-information games played on game graphs
where Player 1 has partial-information and Player 2 has perfect-
information. We formally define them below.

Definition 3.3. (Partial-information stochastic game graphs).
A partial-information stochastic game graph is a tuple G =
〈S,A,∆, (S1, S2), O, η, s0〉, where (a) S is a finite set of states;
(b) A is a finite set of actions; (c) ∆ : S ×A→ D(S) is the prob-
abilistic transition function that maps every state s ∈ S and action
a ∈ A to the probability distribution ∆(s, a) over successor states;
(d) (S1, S2) is a partition of S into Player-1 and Player-2 states,
respectively; (e) O is a finite set of observations; (f) η : S → O
maps every state to an observation; and (g) s0 the initial state.
We will refer to these games as PI 2 1

2
-player game graphs: PI for

partial-information, 2 for the two players and 1
2

for the probabilis-
tic transitions. For a PI 2 1

2
-player game graph G we associate the

setE of edges as follows:E = {(s, t) | ∃a ∈ A.∆(s, a)(t) > 0}.

Deterministic games. We now consider the following special cases
of PI 2 1

2
-player game graphs. If the transition function ∆ : S ×

A → S is deterministic, rather than stochastic, then we have PI
2-player game graphs (partial-information deterministic games).

We now formally define how to obtain partial-information
stochastic game graphs from a sketch P , a client C and inputs I .
We first present the formal definition of a probabilistic scheduler.

Definition 3.4. Let A = {a1, a2 . . . an} be a set of propositions.
An n-thread probabilistic scheduler is an MDP with actions A =
2A and a labelling l : E → {1, 2, . . . , n} of the edges of the MDP.
We require that for a state s and an action a, the corresponding

5 2010/7/17

probability distribution ∆(s, a) has exactly one edge labelled i if
ai ∈ a and no edge labelled i if ai /∈ a.

q1 q2

{a1, a2}/t2 (0.5),{¬a1, a2}/t2 (1.0)

{a1, a2}/t1 (0.5),{a1,¬a2}/t1 (1.0)

{a1,¬a2}/t1 (1.0),
{a1, a2}/t1 (0.5)

{¬a1, a2}/t2 (1.0),
{a1, a2}/t2 (0.5)

Figure 5. A uniform two-thread scheduler

Intuitively, each proposition ai represents the fact that thread
i is active and can proceed. An action represents the set of active
threads and the label on an edge represents the thread to be sched-
uled next. An example of an 2-thread probabilistic scheduler is pre-
sented in Figure 5.

Definition 3.5. Given a sketch P , a client (method expression)
C = ((C1,1 ; . . . C1,k1) ‖ (C2,1 ; . . . C2,k2) ‖ . . . ‖ (Cn,1 ;
. . . Cn,k2)) for the sketch, a probabilistic scheduler Sch and the
set I of inputs for the methods Ci,j , the PI 2 1

2
-player game graph

{{P, C, I , Sch}}P is defined as follows:

1. The state space and initial state are defined as before for transi-
tion graphs.

2. State space partition. The set of states of the game graph in
which there exists method automaton Ci,j which is at a state
where a non-deterministic choice is to be made belong to S1.
The rest of the states are in S2.

3. Observations. The set of Player 1 states in which the same
non-deterministic choice is to be made are mapped to a single
unique observation.

4. Transition function.
(a) If s is a Player 2 state, then the transition function is similar

to the one from transition graphs. It also includes transitions
of the probabilistic scheduler. Let Ts be the set of threads
active at state s and let ms be the scheduler state in s.
Given an thread i ∈ Ts, an edge from state s to ti exists
iff there exists a method automaton Ci,j and its guarded
action (q, g, a, q′) such that:

i. For all j′ < j, the state of Ci,j′ is final in s,
ii. The guard g is true in s and the state of Ci,j is q, and
iii. The action a of method automata updating the state s

produces t and the state of Ci,j is q′.
iv. The state of the scheduler in ti is mti where mti is the

state of the scheduler fromms on scheduling thread i on
action Ts.

The probability of the edge (s, ti) is the same as the proba-
bility of Sch scheduling thread i in ms on action Ts.

(b) If s is a Player 1 state, there exists a choice of which
sychronization action is to be performed by some thread
(say i). Player 1 chooses the action and control moves to
a state from which the only enabled action of thread i is
the one chosen by Player 1. If there are more choices to be
made, then this state is a Player 1 state; otherwise, it is a
Player 2 state.

A non-deterministic scheduler is similar to a probabilistic
scheduler, the only difference is that for a state s and action a, the
choice of the successors are non-deterministic, rather than proba-
bilistic. In the above definition, if we consider non-deterministic
schedulers, then the decision of which thread to execute is decided
by the adversary (i.e., Player 2). Thus we get PI 2-player game
graphs (rather than PI 2 1

2
-player game graphs), and we denote them

{{P, C, I }}.

We show in the following discussion that the game-theoritic
concepts relating to the transition game graphs correspond closely
to the program execution, correctness and performance.
Plays. A PI 2 1

2
-player game is played as follows: a token is placed

on the initial state, and at every step, if the token is at a state in
S1, then Player 1 chooses an action, and otherwise, the token is
at a state in S2, and then Player 2 chooses an action. The token
is moved to the successor state according to the action chosen by
the players and the probabilistic transition function and the process
of moving tokens generate a probability distribution over plays. An
infinite sequence of steps (s0, a0, s1), (s1, a1, s2),. . . is represented
as π = s0a0s1a1s2a2 . . . and is called a play. The set of all plays
is denoted by Π.
Partial-information. The game is partial-information for Player 1,
in the sense that she cannot observe the precise state where the
token is in currently, but only the observation of the state. This is
formalized as the notion of strategies.

Definition 3.6. (Strategies and memoryless strategies). A strategy
for Player 1 is a function τ1 : O∗ → A that maps a sequence
of observations to the next action. A play π = s0a0s1a1s2a2 . . .
conforms to a Player 1 strategy τ1 if for all i ≥ 0, if si ∈ S1, then
τ1(η(s0)η(s1) . . . η(si)) = ai. A memoryless strategy for Player 1
is independent of the history and depends on the current observa-
tion, i.e., a strategy τ1 is memoryless if for all w1, w2 ∈ O∗ and
o ∈ O we have τ1(w1o) = τ1(w2o), and hence τ1 can be repre-
sented as a function τ1 : O → A. Player 2 strategies and Player 2
memoryless strategies are defined analogously using states instead
of observations (as Player 2 has perfect-information). The set of
all Player i strategies is denoted as Γi. Given strategies τ1 ∈ Γ1

and τ2 ∈ Γ2 and the initial state s0, (i) if the transition function
is deterministic, then there is a unique play, denoted π(τ1, τ2), that
conforms both with τ1 and τ2; and (ii) if the transition function is
probabilistic, then there is a unique probability measure, denoted
Prτ1,τ2(·), and Eτ1,τ2(·) is the associated expectation measure.

Fixing a memoryless strategy. Given a PI 2 1
2

-player game graph
G = 〈S,A,∆, (S1, S2), O, η, s0〉, if a memoryless strategy τ1
is fixed for Player 1, then we obtain an MDP, denoted G�τ1

=
(S,A,∆τ1 , s0), as follows: (a) for all s ∈ S2 and t ∈ S, and
for all a ∈ A we have ∆τ1(s, a)(t) = ∆(s, a)(t); (b) for all
s ∈ S1 and t ∈ S, and for all a ∈ A we have ∆τ1(s, a)(t) =
∆(s, τ1(η(s)))(t) (i.e., in Player-1 states the probabilistic transi-
tion for all actions is set according to the action chosen by τ1).
Similarly, if we fix a memoryless strategy in a PI 2-player game
graph, then we obtain a transition system, and if we fix memory-
less strategies for both Player 1 and Player 2 in PI 2 1

2
-player game

graphs, then we obtain a Markov chain.
In the transition graph [[P,C, I]], a play represents an execution

of the client on inputs I , i.e., every step in a play corresponds
to the execution of a particular instruction (guarded action) from
a single method automaton in I . However, a similar statement
that “every play in {{P, C, I }} represents the execution of the
client C on I as a program P allowed by P” does not hold.
This is because at two different states corresponding to the same
choice in the sketch, Player 1 may choose different statements to
be executed next. However, if we restrict the strategies of Player 1
to memoryless-strategies, then the statement holds (however, there
are still steps in plays which do not correspond to any instruction,
but to choices made by Player 1). In fact, we show that there
is a close correspondence between the memoryless strategies of
Player 1 and the programs allowed by a sketch, i.e., we show in
the following lemma that choosing a particular set of options in a
sketch is equivalent to fixing a memoryless strategy for Player 1 in
the transition game graph of the sketch. For the proof of the lemma
we need the following definition of 0-closure.

6 2010/7/17

Definition 3.7. The 0-closure of a transition system (resp. an
MDP) obtained by fixing a Player 1 memoryless strategy τ1 in
{{P, C, I }} (resp. {{P, C, I , Sch}}P), respectively, is the transi-

tion system (resp. the MDP) obtained by removing the Player 1
edges that do not correspond to an actual execution step in the pro-
gram, i.e., if {{P, C, I }}�τ1 (resp. {{P, C, I , Sch}}P �τ1

) has an
edge from s to t which does not correspond to any program in-
struction, in the 0-closure, edge (s, t) is removed and a new edges
(s, u) are added for all (t, u) ∈ E. Also, an edge is added from all
states where all methods in the client have finished execution to the
start state. We denote the 0-closure as ZC({{P, C, I }}�τ1) (resp.
ZC({{P, C, I , Sch}}P�τ1)).

Note that the 0-closure is well defined as we do not have
Player 1 making infinite number of choices in a loop.

Lemma 3.8. For all sketches P , clientsC, inputs I and schedulers
Sch, the following assertions hold:

• For every program P allowed by the sketch P , there
exists a memoryless Player 1 strategy τ1 such that
[[P,C, I]] = ZC({{P, C, I }}�τ1) and [[P,C, I , Sch]]P =

ZC({{P, C, I ,Sch}}P�τ1).
• For every memoryless strategy τ1 of Player 1 in {{P, C, I }},

there exists a program P allowed by P such that
[[P,C, I]] = ZC({{P, C, I }}�τ1) and [[P,C, I , Sch]]P =

ZC({{P, C, I ,Sch}}P�τ1).

Inputs. To compute the correctness and performance cost of
sketches, we parameterize the game graph based on the input to
the methods and the scheduler. We define two simple modifications
of game graphs to compute the worst-case and average-case perfor-
mance of programs allowed by sketches. The correctness check and
performance evaluation is over all possible inputs (and not just for
a single input), and initial heap-states. This is achieved by giving
the control of the inputs to the adversary of the synchronizer. This
is achieved in the transition game graphs as described below. We
present an informal description, which can be easily formalized.

1. The first transition where an input variable is read along a path
from the start state is replaced by a sequence of transitions:
First, Player 2 decides the value of the input variable and then,
the actual transition which reads the input variable is executed.

2. A similar transformation is done to the transitions where a heap
location is first read. Notice that each heap location is guessed
separately and every guess may depend on the execution upto
that point. This is captured by the strategies of Player 2 that are
dependent on the history (not necessarily memoryless).

We denote the transition system and PI 2-player game graphs ob-
tained this way as [[P,C]] and {{P, C}} respectively and their prob-
abilistic versions as [[P,C,Sch]]P and {{P, C, Sch}}P . A version
of Lemma 3.8 easily follows for these versions of game graphs.

Note that giving the control of the inputs to the adversary has the
following consequence: the transition system and game graphs be-
comes infinite for all heap-accessing programs, as an infinite num-
ber of heap configurations may be chosen as the initial heap config-
uration by the adversary. We will show that correctness and perfor-
mance analysis of sketches are preserved under certain abstractions
that produce finite transition systems and games.

3.3 Correctness and Performance analysis

Correctness Analysis. It follows from Lemma 3.8 that paths in the
transition graphs of a sketch and a client correspond to a real sched-
ule and execution of the corresponding client and that the transition
game graph after fixing a memoryless strategy correspond to tran-

sition graphs for a single program allowed by the sketch. There-
fore, we can check correctness conditions for programs allowed by
sketches on transition game graphs. We model the correctness con-
ditions as Safety objectives on the game graphs.

Safety objectives. A safety objective consists of a set B of bad
states, and requires that states inB are never visited. In other words,
the safety objective defines the subset SafetyB of the plays: for a
play π, if never a state in B is visited, then π ∈ SafetyB(π), oth-
erwise π /∈ SafetyB . We show how various correctness conditions
can be modelled as Safety objectives.

Linearizability. Linearizability can be specified as Safety objec-
tives. The important step is to check when each method finishes
execution, whether the return value is consistent with some valid
serialization of the client. Therefore, the set of states which are un-
safe are the ones which have return values of methods which are
not consistent with any serialization of the client. For a detailed ex-
planation of checking linearizability as safety, refer to [8] where
the reduction is done for methods which operate on a list.

Deadlock freedom. One of the major problems of synchronizing
programs using some form of blocking primitives like locks is that
deadlocks may arise. This is when two or more threads are waiting
for resources held by each other. We can do deadlock detection in a
transition graph by checking for the existence of reachable states in
which all threads which have not finished execution are waiting for
some lock. This can be cast as a Safety objective by adding such
states, which do not have any transitions from them, to the set of
unsafe states.

Data-race freedom. Data-races occur when two or more threads
write to the same shared memory location and one of the writes
overwrites the other leading to loss of data. To avoid this we need
to check in the game graph model that there are no states where
two or more transitions of different threads are enabled and all the
transitions write to the same memory location. These kind of states
can be marked unsafe and the objective would be to avoid them.

Performance analysis. We will show how to obtain a PI 2-player
(resp. PI 2 1

2
-player) game with certain quantitative objectives from

{{P, C}} (resp. {{P, C, Sch}}P) such that solution the game is the
worst-case (resp. average-case) performance of a correct program
allowed by P .

Limit-average and Limit-average safety objectives. The limit-
average is a quantitative objective that assigns a real-valued num-
ber to every play. The limit-average objective consists of a cost
function c : E → Q ∪ {∞}, and assigns to a play the long-run av-
erage of the weights. Formally, for a play π = (s0a0s1a1s2 . . .),
we have LimAvgc(π) = lim infn→∞

1
n

Pn
i=0 c((si, ai, si+1)).

The limit-average safety objectives are a lexico-graphic combina-
tion of limit-average and saefty objectives: the objective consists
of a cost function c, and a set B of bad states, and for a play
π, if π ∈ SafetyB , then the value of π is LimAvgc(π), other-
wise it is ∞ (if the safety objective is satisfied, then we have the
limit-average value,∞ otherwise). The limit-average safety objec-
tive can be reduced to safety objectives by making the states in
B absorbing (sink states with only self-loops) and assigning them
weight∞.

Definition 3.9. Conisder a sketch P , a program P , a client C, a
set I of inputs, a usage model UsM, a performance model PerfM,
and a scheduler Sch.

• Given an execution e of C on I , its performance cost according
to PerfM is defined to be the total cost of each step of the
execution averaged over the number of steps.

• The worst-case performance cost according to PerfM of a client
C with inputs I is the supremum of the performance cost of all

7 2010/7/17

possible executions of C with input I and the corresponding
average-case performance cost is the expectation of performace
cost of all possible executions over to the probability distribu-
tion over executions when client C is scheduled by Sch.

• The worst-case performance cost (resp. average performance
cost) according to PerfM of a program P used as per the usage
model UsM is the sum of the worst-case performance (resp.
average performance) cost over all inputs and over all clients
allowed by the program, averaged over the probabilities of use
of various clients.

• The worst-case performace cost (resp. average performance
cost) of a sketch P according to a performance model PerfM,
when used as per the usage model UsM, is defined to be the
worst-case performance (resp. average-case performance) cost
of the best program allowed by P .

Given a performance model PerfM, i.e., a weighted automata
and a transition game graph {{P, C}}, we take their product by
matching the alphabet of the PerfM with the states of {{P, C}}.
For example, if there exists a Player 2 transition from state s1 to
state s2 in {{P, C}} which corresponds to a step in the program
where a lock is acquired, there will exist transitions from states
(s1, qi) to (s2, qj) in the product where δ(qi, l) = qj , where l
is the symbol for lock. The weight of this transition will be the
weight of the corresponding transition in PerfM. We denote this
product as {{P, C,PerfM}}. The similar product construction for
{{P, C, Sch}}P is denoted as {{P, C, Sch,PerfM}}P . The product

constructions give us PI 2 1
2

- and PI 2-player game graphs with
limit-average safety objectives. We now define the notion of values
in games, and in Theorem 3.10 we establish the correspondence of
values games and performance costs of sketches.
Values. For a quantitative objective f , the value of two strategies
τ1 ∈ Γ1 and τ2 ∈ Γ2, denoted Val(f, τ1, τ2), is the expected f
value of the unique plays under both τ1 and τ2, i.e., Eτ1,τ2(f). The
value of a Player 1 strategy τ1 ∈ Γ1, denoted as Val(f, τ1), is
the maximum value of a play given a counter strategy of Player 2.
Formally, Val(f, τ1) = supτ2∈Γ2

Val(f, τ1, τ2). Similarly, we
have Val(f, τ2) = infτ1∈Γ1 Val(f, τ1, τ2). The value of the game,
denote Val(f), is the minimum value that can be guaranteed by
Player 1, i.e., Val(f) = infτ1∈Γ1 supτ2∈Γ2

Val(f, τ1, τ2). The
memoryless value of the game is obtained as above by restricting
the strategies of Player 1 to be memoryless.

Theorem 3.10. Consider a sketch P , a client C, a performance
model PerfM, a scheduler Sch and a correctness property Φ for
P specified as a safety objective. The memoryless value of the
LimAvg Safety PI 2-player game {{P, C,PerfM}} (resp. PI 2 1

2
-

player game {{P, C, Sch,PerfM}}P) is equal to the worst-case
(resp. average-case) performance cost of the best correct program
allowed by P for the client C (resp. under scheduler Sch).

3.4 Finite-State Abstractions
In the preceding sections, we developed a simple reduction from
sketches to PI-games so that the both correctness and performance
properties can be checked on the game. However, as mentioned be-
fore, it is possible and infact true for most heap modifying programs
that the state spaces of the above games are infinite.

In this section, we prove that the correctness and performance
properties are preserved under certain abstractions. These results
allow us to use abstracted finite versions of the game graphs and
transition systems to compute the properties and synthesize from
sketches.

Definition 3.11. A method sketch P is analyzable for PerfM if
there exists abstraction functions Abst, ch and tr such that the
following holds:

• Abst(P,C) is a finite state transition system for every P al-
lowed by P and every client C,

• For all clients C and correctness conditions Φ, a program
P allowed by the sketch satisfies Φ when executed as C iff
Abst(P,C) |= tr(Φ), and

• For all clients C, and for all programs P allowed by the sketch,
[[P,C,PerfM]] = [[Abst(P,C), ch(PerfM)]].

Intuitively, ch and tr are functions which transform quantitative
and boolean objectives from the real model of the program to
objectives on the abstract model. Therefore, the above definition
intuitively says that a sketch is analyzable if there exists a finite
abstraction on which the correctness and performance costs are
preserved.

We show here that any sketch consisting of method sketches as
defined in Section 2, i.e., methods that operate on a singly-linked
heap with a single traversal of the heap per method, is analyzable.
For this, we consider the lock-step abstraction introduced in [8]: the
reduction was shown to work for verification of safety objectives.
We extend the result in two ways: first we show that the abstraction
works for the more general problem of games for synthesis, and
second it works for the worst-case performance analysis of quanti-
tative objectives.

Theorem 3.12. Method-automata are analyzable using the order
abstraction and lock-step reduction for performance models with
parameters locking cost, waiting cost and context-switch costs.

Proof idea. The correctness part of the proof follows directly from
the results of [8]. The key idea in the proof for preservation of per-
formance costs is that under the order abstraction and lock-step re-
duction, every execution has an equivalent execution in the abstract
model for which the locking and waiting costs are preserved and
that there exists an execution which has a higher context-switch
cost.

Also, the above theorem helps us analyse a large class of other
problems. For example, using the order abstraction on finite pro-
grams helps us reduce the size of the game graphs so that the anal-
ysis and synthesis is much more efficient, for both boolean and
quantitative versions.

Small-step big-step optimization. Although, the above theorem
helps us construct a finite-state model for many heap-based pro-
grams, the state space obtained is still significantly large. Hence
even the correctness check (for linearizability) as described in [8]
is too slow in practice. We have come up with a very practical op-
timization, namely small-step big-step optimization to reduce the
state space by an order of magnitude. For linearizability checking,
the lock-step abstraction simulates separate sequential runs of the
method expression, and one step of each sequential run is executed
for each transition of the finite transition system. Instead we simu-
late the sequential runs in big steps: a collection of sequential steps
once in few transitions is combined as a big step. We ensure that
the big step happens every time the value of a fresh heap location
is chosen. This optimization leads to huge space saving, and as a
consequence not only makes the quantitative synthesis feasible but
also hugely improves the verification results of [8].

3.5 Computational Complexity of PI Games
We now present the decision problems for PI 2 1

2
and 2-player game

graphs, and study the complexity.

Decision problems. Given a quantitative objective f and a rational
threshold q ∈ Q, the decision problem (resp. memoryless decision
problem) asks whether there is a strategy (resp. memoryless strat-
egy) τ1 for Player 1 such that Val(f, τ1) ≤ q.

8 2010/7/17

The classical game theory study always considers the general
decision problem which is undecidable for limit-average objec-
tives [13].

Theorem 3.13. [13] The decision problems for LimAvg and
LimAvg-Safety objectives are undecidable for PI 2 1

2
- and PI 2-

player game graphs.

We now study the complexity of the memoryless decision prob-
lems for PI 2 1

2
- and PI 2-player game graphs that has not been

studied before. We have already shown in Theorem 3.10 that the
relevant problem for synthesis from sketches is the memoryless
value problem. For the special case of MDPs, the answer to the
decision and memoryless decision problems coincide and can be
solved in polynomial time [15] (using linear-programming to solve
MDPs with safety and limit-average objectives).

Theorem 3.14. [15] The memoryless decision problem for
LimAvg-Safety objectives can be solved in polynomial time for
MDPs.

Lemma 3.15. The memoryless decision problem for PI 2-player
game graphs with Safety and LimAvg objectives are NP-hard.

init

x1 ¬x3

¬x2 ¬x4

x3 x1

bad

true

false

true

false

false

true

⊥ ⊥

false

true

false

true

true

false

C1

C2

Figure 6. 3-SAT to memoryless partial-information Safety games

Proof. We first show NP-hardness for safety objectives.
(NP-hardness). We will show that the problem is NP-hard by reduc-
ing the 3-SAT problem. Given a 3-SAT formula Φ over variables
x1, x2, . . .xN , with clauses C1, C2, . . .CK , we construct a partial-
information game graph withN+1 observations and 3K+2 states
such that Player 1 has a memoryless winning strategy from the ini-
tial state if and only if Φ is satisfiable. The construction is described
below:

• The states of the game graph are {init} ∪ {si,j | i ∈ [1,K] ∧
j ∈ {1, 2, 3}} ∪ {bad}.

• The observations and the observation mapping are as follows:
init and bad are mapped with observation 0, and si,j is mapped
with observation k if the jth variable of the Ci clause is xk or
¬xk.

• init and bad are Player 2 states and all other states are Player 1
states.

• The edges of the game graph are as follows:
1. For all i ∈ [0,K], there is an edge from init to si,1 on the

symbol ⊥.
2. If the jth literal of clause Ci is xk, there is an edge from
si,j to init on true and to si+1,j on false (for j ∈ {1, 2}).
For j = 3, the edge on true leads to init and the edge on
false leads to bad .

3. If the jth literal of clause Ci is ¬xk, there is an edge from
si,j to init on false and to si+1,j on true (for j ∈ {1, 2}).
For j = 3, the edge on false leads to init and the edge on
true leads to bad .

• The objective for Player 1 is to avoid reaching bad and the
objective for Player 2 is to reach bad .

Intuitively, Player 2 chooses a clause Ci in the initial state init .
Player 1 then plays according to her memoryless strategy from each
of the states si,j . If the action a ∈ {true, false} chosen in si,j
makes the literal at position j in clause Ci true, control goes back
to init . Otherwise, the control goes to the next si,j+1. If the choices
at all three si,j’s make the corresponding literal false, the control
goes to bad . The game graph structure is illustrated in Figure 6.

Given a truth value assignment of xi’s such that Φ is satisfied,
we can construct a memoryless strategy of Player 1 which chooses
the action at observation i same as the valuation of xi, and the
memoryless strategy is winning for Player 1. In every triple of si,j’s
at least one of the edges dictated by this strategy lead to init . If that
were not the case, the corresponding clause would not have been
satisfied. Given a winning memoryless strategy τ1, the valuation of
xi’s which assigns the τ1(i) to xi satisfies each clause Ck in Φ.
This follows from a similar argument as above. Hence the hardness
result follows.

The above reduction is slightly modified to show that the
LimAvg memoryless decision problem is also NP-hard. This can
be done by adding a self loop on state bad with weight 1 and at-
taching the weight 0 to all other edges. Now, Player 1 can obtain
a value less than 1 if and only if she has a memoryless winning
strategy in the Safety game.

The desired result follows.

Lemma 3.16. The memoryless decision problem for LimAvg-
Safety objectives for PI 2 1

2
-player game graphs is in NP.

Proof. Given a memoryless winning strategy for a Player 1 in a
PI 2 1

2
-player game graph, the verification problem is equivalent

to solving for the same objective on the MDP obtained by fixing
the strategy for Player 1. Hence the memoryless strategy is the
polynomial witness, and Theorem 3.14 provides the polynomial
time verification procedure to prove the desired result.

Lemma 3.15 and Lemma 3.16 gives us the following theorem.

Theorem 3.17. (Complexity). The memoryless decision problems
for Safety, LimAvg, and LimAvg-Safety objectives are NP-
complete for PI 2 1

2
- and PI 2-player game graphs.

4. Synthesis and Evaluation Algorithms
In this section we present algorithms for synthesis of concur-
rent programs that overcome the theoretical difficulty (of NP-
completeness) in cases of practical interest and work efficiently for
games from sketches.
Synthesis algorithm. Our quantitative synthesis algorithm (Algo-
rithm 1) takes as input a sequential sketch, a performance measure
given as a weighted automaton, a scheduler, a set of clients, and

9 2010/7/17

Algorithm 1 Quantitative synthesis Algorithm
Input: P: sequential data structure sketch

PerfM: performance measure
Sch: a scheduler
Cl: a set of clients
UsM: a usage model

Output: (Cconc concurrent data structure) or fail
1: L = MemorylessStrategies(P)
2: LS ← LtWtPaCor(L,P)
3: Set ES← ∅
4: while LS 6= ∅ do
5: Pick τ1 ∈ LS and remove τ1 from LS
6: (correct, ctrex)← CheckCorrect(τ1,P)
7: if ¬correct then
8: LS ← prune(LS , ctrex)
9: else

10: val(τ1)← EvalPerf(P,PerfM, Sch,Cl,UsM, τ1)
11: ES← ES ∪ {(τ1 , val(τ1))};
12: if ES 6= ∅ then
13: τ∗1 ← arg minτ1{val(τ1) | (τ1, val(τ1)) ∈ ES}
14: Cconc ← prog(τ∗1 ,P);
15: output Cconc

16: else
17: output “Fail.”

a usage model and produces as its output a concurrent data struc-
ture implementation that is both correct and optimal with respect to
the performance measure and the usage model. The algorithm enu-
merates over the memoryless strategies for player 1 of the PI game
graph(MDP) corresponding to the sequential sketch P , and checks
for correctness and the performance of the strategies. The correct-
ness and performance evaluation steps are computationally expen-
sive. Our algorithm first uses a light-weight pre-processing step
based on partial correctness (LtWtPaCor) that efficiently prunes
the set of strategies that needs to be checked for correctness, and ob-
tains the list LS of sensible strategies.The procedure LtWtPaCor
uses sanity checks on sequential sketch with respect to synchro-
nization constructs like avoiding unlocking a list node before lock-
ing, elimination of duplicate strategies (strategies which are differ-
ent but equivalent) and considering only the strategies satisfying a
particular order of selections in similar choice blocks. In our exam-
ples, this method prunes the number of strategies from thousands
to less than hundred in less than a second. The strategies in LS
are checked for correctness and performance evaluation in a loop.
The first check is the correctness check: if a strategy τ1 is not cor-
rect, then we obtain a witness counter-example ctrex. The counter-
example is used to further prune the set LS of sensible strategies. If
a strategy is correct, then we evaluate the performance of the strat-
egy with respect to the performance measure and the usage model.
The set ES contains pairs of strategies and their performance val-
ues.

We present two algorithms for performance evaluation: one for
the worst-case performance, and the other for the average-case
performance. Once we obtain the set of strategies that are correct,
we choose the strategy that is optimal with respect to performance
from ES. The formal description of our synthesis algorithm is
given as Algorithm 1. We now describe the performance evaluation
algorithms: (a) Algorithm 2 for the worst-case performance and
(b) Algorithm 3 for the average-case performance.

Worst case evaluation algorithm. Algorithm 2 is invoked as one
of the EvalPerf procedure by Algorithm 1. The algorithm takes as
input a sequential sketch, evaluation parameters (as used in Algo-
rithm 1) and a strategy τ1, and outputs the worst-case performance

Algorithm 2 Worst Case Performance Evaluation
Input: P: sequential data structure sketch

PerfM: performance measure
Sch: a scheduler
Cl: a set of clients
UsM: a usage model
τ1 : a strategy

Output: val(τ1) : performance value of strategy τ1

1: for all C ∈ Cl do
2: Gr← ZC({{P, C,PerfM}}�τ1)

3: val(τ1, C)← MaxMeanCycle(Gr)
4: val(τ1) =

P
C∈Cl ProbUsM(C).val(τ1, C)

value for the strategy τ1. The steps of the algorithm are as follows:
(a) for each client C, first the algorithm constructs the synchronus
product graph Gr of the performance model PerfM (weighted au-
tomaton) and the finite state transition system {{P, C}}�τ1

(b) then, it finds the maximum mean-value cost of a cycle in
this graph (this corresponds to the worst-case performance for the
client C over all inputs and all schedules);

(c) finally, it computes the worst-case performance value of the
strategy τ1 as the probabilistic average of these values over the
usage model.

The product construction in step (a) has already been described
in Section 3. We obtain value of the strategy by computing the max-
imum mean cycle value in a weighted graph. The two well-known
algorithms for this problem are Karp’s mean-cycle algorithm with
O(|V | · |E|) running time in a graph with |V | vertices and |E|
edges, and (b) Howard’s strategy improvement algorithm for which
the only known bound on running time is exponential. For a sum-
mary of various max mean cycle algorithms, see [12]. We tested
both approaches, and in our example of large game graphs the strat-
egy improvement algorithm was much faster than the mean-cycle
algorithm. For our examples, the mean-cycle algorithm took around
a minute on average, whereas the strategy improvement algorithm
took less than a second. The strategy improvement algorithm fixes a
strategy (one edge per state) in each strongly connected component
and then tries to locally improve distance of nodes from the best
cycle. When such improvement is no further possible, the strategy
improvement stops. For our examples strategy improvement works
very well due to the small (bounded) out-degree of each vertex of
Gr. The formal description of the worst-case evaluation algorithm
is given as Algorithm 2.

Algorithm 3 Average Case Performance Evaluation
Input: P: sequential data structure sketch

PerfM: performance measure
Sch: a scheduler
Cl: a set of clients
UsM: a usage model
τ1 : a strategy

Output: val(τ1) : performance value of strategy τ1

1: for all C ∈ Cl do
2: Gr← ZC({{P, C, Sch,PerfM}}P�τ1),PerfM

3: val(τ1, C)← SolveMDP(Gr)
4: val(τ1) =

P
C∈Cl ProbUsM(C).val(τ1, C)

Average case evaluation algorithm. Similar to Algorithm 2, Al-
gorithm 3 is also invoked as one of the EvalPerf procedure by Al-
gorithm 1, and hence its inputs coincide with Algorithm 2. The
output is the average case performance value for the strategy τ1.

10 2010/7/17

Like Algorithm 2, the steps of Algorithm 3 are as follows: (a) for
each client C, first the algorithm constructs the synchronus prod-
uct of the performance model PerfM (weighted automaton), the
finite state transition system {{P, C}}�τ1 obtained under τ1 and
the probabilistic scheduler; in contrast to Algorithm 2 the product
construction gives us an MDP, not a graph, and this is due to the
probabilistic scheduler for the average-case performance; (b) then
it finds the limit-average value of the MDP (this corresponds to the
average-case performance for the client C for the worst-case in-
puts and under the probabilistic scheduler); (c) finally, it takes the
probabilistic average of these values using the usage model to find
the average-case performance value of the strategy τ1. The product
construction in step (a) has already been described in Section 3.

We have implemented the strategy-improvement algorithm for
MDPs [14, 15], as they are the most efficient in practice, to ob-
tain the limit-average value of an MDP. The classical strategy-
improvement algorithm assumes cost on every state, however, in
our model the cost are on edges. The cost of a state is taken as
the probabilistic average of the cost of the outgoing edges (the two
cost models are equivalent since the Cesaro limit (limit-average fre-
quency) of a state in a Markov chain obtained by fixing a strategy
in an MDP is same as the probabilistic average of the Cesaro limit
frequencies of the outgoing edges). The strategy improvement algo-
rithm fixes a strategy τ1 and calculates two vectors vτ1 (value vec-
tor) and δτ1 (deviation vector). The vectors (vτ1 , δτ1) is the unique
(x, y) solution of the following set of linear equations :

(a) [I −∆τ1]x = 0; (b) y + [I −∆τ1]z = 0;
(c) x+ [I −∆τ1]y = cτ1 .

ff
(1)

where ∆τ1 is the probability matrix of the Markov chain obtained
by fixing the strategy τ1 in the MDP and cτ1 is the cost vector.
Since the graphs we deal with are large (i.e., the probability matrix
∆τ1 is huge but sparse), implementation of methods like Gaussian
elimination that require the full matrix to be stored were infeasible.
Hence the only choice for implementation are iterative methods
which exploit the fact that the matrix is sparse.

The solution given by the equations in (1) was inefficient in
practice due to two reasons: (1) if n is the number of states, then the
three equations in (1) gives us 3n equations in 3n variables (x, y,
and z each have n component variables), and hence each iteration
requires a sparse matrix multiplication of size 3 · n× 3 · n; (b) the
convergence rate is quite slow for the iterative methods. Our main
insight to overcome the first problem is as follows: to retrieve (x, y)
from the equations, instead of solving (1) directly, we first solve the
following equation:

[I −∆τ1]3z + [I −∆τ1]cτ1 = 0 (2)

After finding a solution z of (2), we calculate

(x, y) = ([I −∆τ1]2z + cτ1 ,−[I −∆τ1]z).

The major benefit of this two step solution is as follows: the solu-
tion of (2) requires 3 sparse multiplications (for [I − ∆τ1]3z) of
a n × n matrix. This gives us a direct improvement by a factor
of 3, and since this step is executed over many iterations our im-
provement is significant. We note that the final solution of (x, y)
after solving (2) is computed only once and not in iterations. Sev-
eral other iterative methods (like Jacobi, Gauss-Seidel, Biconju-
gate gradient stabilized etc) that exploit special properties of ma-
trices were infeasible as they did not converge fast on our exam-
ples because the matrices did not satisfy the special properties re-
quired by these methods. We used the Generalized Minimal Resid-
ual (GMRES) method that does not require any special structure of
the matrix. The convergence of GMRES can only be theoretically
guaranteed in general with some special conditions, however, in
all our experiments GMRES converged in a few iterations. More-

over, the GMRES convergence for (2) was much faster as compared
to convergence for (1). On average the GMRES method to solve
(1) took 10 minutes, where as the solution for (2) was achieved
on average in less than 20 seconds. This gives us the computa-
tion of the vectors (vτ1 , δτ1). The improvement step of the strat-
egy improvement algorithm is as follows: it locally improves the
strategy τ1 using these two vectors for each state: an action a
in state s is better than the current chosen action by τ1 if either
(a) the expected value for a is greater than the current value, i.e.,P
t∈S ∆(s, a)(t) · vτ1 [t] > vτ1 [s]; or (b) the expected value for

a is the same as the current value and the sum of the cost and ex-
pected deviation is greater than the sum of the current value and
the current deviation, i.e., (

P
t∈S ∆(s, a)(t) · vτ1 [t] = vτ1 [s] and

c(s, a) +
P
t∈S ∆(s, a)(t) · δτ1 [t] > vτ1 [s] + δτ1 [s]). The algo-

rithm stops when no improvement can be made. The correctness
of the strategy improvement algorithm (i.e., when no further local
improvement is possible, then we have a globally optimal strategy)
can be found in [15]. The formal description of the average-case
performance evaluation is given as Algorithm 3.
Counter-example analysis. Counter-example based elimination of
synchronization strategies is a method that has been used success-
fully for concurrent program synthesis [24]. If a synchronization
strategy is incorrect, i.e., allows an unsafe execution, we extract a
path from the transition game graph which corresponds to the un-
safe execution. Now, a projection of this trace on the significant
variables (variables which are not used only for synchronization) is
taken. We try to simulate this counter-example trace on the rest of
the valid strategies for unsafe execution to prune incorrect strate-
gies. As we will see in the examples (Section 6), often many strate-
gies are eliminated with a single counter-example.

5. Cut-off theorem for Linearizability of Lists
We consider certain special properties of concurrent data structure
access methods which can ensure linearizability for an unbounded
number of threads given that all two-thread clients, each thread
running one method, are linearizable. We will show that both our
list examples satisfy such properties.
Shared accesses. We model an execution of a method automaton
in terms of its accesses to the shared memory (shared variables
or heap, denoted by SHM). We classify shared memory accesses
into the following categories: readsR, writesW , decision of return
value DR, locking L and unlocking U . The categories distinguish
between data reads/writes to shared memory and synchronization
accesses via locks. The statement DR is the last read from the
SHM after which the return value of the method can be decided
locally. An execution of a client program with k threads is modeled
by a sequence over the alphabet

S
0<i≤k{R

i,W i, Li, U i, Di
R},

symbols being indexed by thread number.
One-shared-update programs. We define a class of method au-
tomata namely one-shared update (OSU) method automata. Au-
tomata in this class: (i) Perform at most one write W to SHM. (ii)
Executes the decision read DR where the automaton decides the
return value and whether it is going to perform W (with a fixed
return value).

For the sketch in Figure 7, one can easily verify (also automati-
cally by static analysis) that it gives rise to OSU method automata.
For the sketch in Figure 8, the logical remove statement can be
taken as the single W statement for the remove method due to
semantics of lazy marking and retry. For the remove method in
Figure 7, the write W is issued in the statement pred.next =
curr.next;. This statement deletes the curr element from the
list. (Note that this statement is decomposed into two transitions,
one that reads the value of curr.next, and the other that writes
the value of pred.next). For the add method in Figures 7 and

11 2010/7/17

8, the write W is issued because of the statement pred.next =
node, i.e. the statement that actually adds a node into the list.
Note that the preceding statement node.next = curr modifies
a node (pointed to by the variable node) that is unreachable by
other threads. This is an assumption on the inputs of the method.
This assignment is therefore not modeled as a write to a SHM lo-
cation. For the remove method in Figure 8 due to semantics of the
sketch, we can model the curr.marked = true statement as the
only shared update because the add and remove methods wait for
the next statement(physical write to the shared list) of the original
remove method to complete in case it wants to add or remove a
node before or after the node being removed, and the contains
method returns false after the node is marked if it were searching
for it. Effect of marking a node in remove method is equivalent
to removing the node in the same statement for all other methods.
Thus, we have Proposition 5.1.

Proposition 5.1. The programs arising from sketches in Figure 7
and Figure 8 are OSU programs.

Critical reads. An action statement of an OSU method in a given
execution e is the write statement W if it executes a write in e
or the decision read DR (last read for deciding the return value)
if it does not execute any write statement. We now define critical
reads for an OSU method automaton. Intuitively, critical reads for
a method automaton are those which determine the result of the
action statement.

Definition 5.2. A set of reads is critical for an OSU method iff
for any two executions of the method in which the configurations
of SHM are the same before the corresponding action statements,
the configuration and return value resulting after execution of the
action statement are the same.

Note that the decision read DR (and hence all its critical reads)
are also critical reads for the write statement (W).

Cut-off theorem: basic ideas. Our cut-off theorem will show that for
OSU methods a stronger notion of linearizability for all 2 thread-
clients, each thread with a single-method, is sufficient (and neces-
sary) to ensure linearizability for all n thread-clients, for all n ≥ 2.
Our proof is by induction on the number of threads. The basic idea
of the proof is as follows: let us consider two OSU methods m1

and m2 such that they are 2-thread linearizable and an interleaved
execution e of m1 and m2. Without loss of generality, let the action
statement A1 of m1 precede the action statement A2 of m2 in e.
To prove the result for the inductive case we would need the fol-
lowing: ensuring that all reads of m2 before A1 can be shifted after
A2, without changing values of the critical reads of m2. However,
this fact cannot be inferred straightforwardly from linearizability.
Hence we assume a stronger condition (defined as strong lineariz-
ability (SL)), which strengthens the inductive hypothesis, and then
with the stronger inductive hypothesis we show that the stronger in-
ductive claim holds. The other important component of the proof is
to preserve synchronization under projection on component threads
(longest prefix match of the execution with the language of all al-
lowed executions of the component threads). We show this below.

Given an execution e for a set CO of OSU methods (including
m1 and m2) running in parallel with its first action statement being
A1 (corresponding to method m1), we define two-method projec-
tion of e w.r.t m1 and m2 as the interleaved execution π(denoted
by e|m1,m2) which is obtained by first scheduling(as much as pos-
sible) statements of both methods in the order in which they occur
in e starting with the same configuration of SHM as e, and then if
needed completing m2 as per the configuration of SHM after exe-
cution ofA1. Note that π need not match e w.r.t the trace of m2 but
the trace of m1 will be the same in both π and e.

Preserving synchronization under projection. We claim that the
synchronization between the methods is preserved under projection
of an execution i.e., given any allowed execution e comprising of n
threads each running a single method, any projection e′ of e is also
an allowed execution. This statement follows for error-free lock-
based synchronization since matching lock and unlock statements
are always local to a single thread (any other thread unlocking a
lock held by this thread results in an error).

Definition 5.3. (Strong linearizability (SL)) Given a set of k OSU
methods CO = {m1, ...,mk}, we say that CO is n-thread strongly
linearizable(SL), if for every interleaved execution e of an n-thread
client (each thread running one method from CO), there is a se-
quential execution se of the same client such that:
• In se, methods are executed in the order of their action state-

ments in e and the return values of each method in both e and
se are identical i.e. the execution is serializable in the order of
action statements of the OSU methods, and

• all critical reads of corresponding methods are identical in both
e and se.

Lemma 5.4. Given two valid executions e1 and e2 for a set A of
OSU methods running in parallel(including m1 and m2) such that
(i) A1 (action statement of m1) is the first action statement of both
the executions and (ii) there is some critical read R2

c of m2 before
A1 in e1 and the same readR2

c is afterA1 but before the next action
statement in e2 then value of the critical readR2

c is the same in both
e1 and e2, provided A is 2-thread strongly linearizable.

Proof. Consider the two-method projections π1 = e1|m1,m2 and
π2 = e2|m1,m2 . By preservation of synchronization under two-
method projections, both π1 and π2 are valid executions.Now, by
2-thread SL of methods m1 and m2, both executions π1 and π2

have the same values of all critical reads as the sequential execution
sequential(m1,m2). Hence, the values of the critical read R2

c in
π1 and π2 are the same. Since all statements in e1 before R2

c are
only reads, the value of R2

c in e1 and π1 are the same. Similarly,
since R2

c is between A1 and the next action statement in e2, the
configuration of SHM in both e2 and π2 at the time of reading R2

c

can change only due to A1 for which all critical reads are identical
in e2 and π2 (reads on the initial configuration of the SHM), hence,
value of R2

c in both executions e2 and π2 are identical. This proves
that value of the critical read R2

c is same in both e1 and e2.

Theorem 5.5. (Cut-off theorem). Given a set of k OSU methods
CO , if CO is two-thread strongly linearizable, then CO is n-thread
strongly linearizable for all n ≥ 2.

Proof. The proof is by induction on n.
Base case n = 2 is true by assumption. We assume n−1 thread

strong linearizability. Now, we consider n-threads each running a
method from A (say {mi : 1 ≤ i ≤ n} and an interleaved execu-
tion e for these n methods. Let the order of action statements in e
of the methods be A1, A2, ..., An. We consider all critical reads
before A1 for method mi and shift all statements of mi before
A1 to just after A1. Such an execution is definitely allowed since
locking and unlocking is thread-specific(at any instant locks are
associated with the thread holding it and only that thread’s state-
ment can release the lock), any thread can start executing at any
point during the execution of other methods and moreover all re-
turn values and list configuration remains the same because there
is only one action statement A1 that can change critical reads of
mi but from lemma 5.4 and two-thread strong linearizability, all
critical reads are maintained. We perform this step for all methods
having a statement before A1 in e and get an execution e′ with
method m1 being separated from rest of the methods without af-
fecting any return values or critical reads. Now, by (n − 1)-thread

12 2010/7/17

linearizability, methods {m2, ...,mn} can be strongly linearized as
sequential(m2, ...,mn). Hence e is equivalent to a n-method se-
quential execution which satisfies all conditions of strong lineariz-
ability.

Strong linearizability for list examples. In our list examples, there
is no critical read for any method m if it does not execute aW (only
read is DR itself for deciding return value) and there is exactly
one critical read statement RC just before the write statement W .
Consider two methods m1 and m2(from sketch) and an allowed
interleaved execution e: if a method does not execute a W then SL
follows from the fact that there is only one read DR for deciding
the return value for that method.

The sequential execution in order of the action statements will
definitely preserve all critical reads and return value as there is at
most one write statement that can change the list. If both methods
perform a write and the value of RC for m2 changes when it ex-
ecutes after action statement of m1(A1) in sequential(m1,m2),
then the execution is not linearizable (RC is either successor as-
signment (remove) or decision of next list node (add), which if
read wrongly will result into different configuration of the list).

Lemma 5.6. For our list examples, two-thread linearizability im-
plies two-thread SL.

Hence we have the following implication chain: two-thread lin-
earizability implies two-thread SL (by Lemma 5.8), two-thread SL
implies n-thread SL (by Theorem 5.5), and n-thread SL implies
n-thread linearizability since SL is a stronger condition than lin-
earizability. We have the following corollary.

Corollary 5.7. For our list example sketches in Figure 7 and
Figure 8, if add, remove,contains are two-thread linearizable,
then they are n-thread linearizable for all n ≥ 2.

Strong linearizability for list examples. In our list examples,
there is no critical read for a method m if it does not execute
a write statement (only read is the decision statement itself) and
there is exactly one critical read statement Rc just before the write
statement W in every method that executes a W . Two thread
linearizability ensures the following: Consider two methods m1 and
m2 and an allowed interleaved execution e:

• if one of them does not execute W , then they are SL because
one method does not change the SHM at all and decides the
return value in just one read.

• if both methods perform a write, then suppose the value of the
critical read for m2 changes when it executes after A1 (action
statement of m1), then the execution (although allowed) is not
linearizable (because in our list examples, the critical read is
either successor assignment (remove) or decision of next node
(add), which if read wrongly will definitely result into different
configuration of the SHM (list)).

Lemma 5.8. For our list example, two-thread linearizability im-
plies two-thread SL.

Hence we have the following implication chain: two-thread lin-
earizability implies two-thread SL (by Lemma 5.8), two-thread SL
implies n-thread SL (by Theorem 5.5), and n-thread SL implies
n-thread linearizability since SL is a stronger condition than lin-
earizability. We have the following corollary.

Corollary 5.9. For our list examples sketches in Figure 7 and
Figure 8, if add, remove,contains are two-thread linearizable,
then they are n-thread linearizable for all n ≥ 2.

choice C1 : { lock.lock(); pred.lock();
curr.lock(); lock.unlock(); pred.unlock();
curr.unlock(); skip; }

public (Node, Node) find(Node head, Node item)
Node pred = head;
choice C1; //should be pred or lock.lock()
Node curr = pred.next;
choice C1; //should be curr.lock()
while (curr.key < item.key)

choice C1; //should be pred.unlock()
pred = curr; curr = curr.next;
choice C1; //should be curr.lock()

return (pred,curr);
public boolean remove(Node item)

(pred, curr) = find(head, item);
if (curr.key == node.key)

pred.next = curr.next; ret = true;
else ret = false;
choice C1; //should be pred.unlock()
choice C1; //should be curr.unlock() or lock.unlock()
return ret;

Figure 7. Coarse-vs-fine sketch

6. Experimental Evaluation
We have implemented the algorithms presented in Section 4 in a
tool as follows: The input is a Java file containing the sequential
sketch with choice blocks. The methods are parsed into method
automata and strategies are eliminated by sanity checks, simple as-
sertion checking with SPIN model checker [19], and finally using
counter-example based analysis. We obtain weighted transition sys-
tems (or MDPs) from the the performance model (and scheduler)
for the correct strategies. For the analysis of weighted transition
systems we use the implementation of Howard’s policy iteration in
the LEMON library [2] and for average case analysis on MDPs,
we use classical policy iteration with the novel optimizations ex-
plained in Section 4. We use SPARSELIB library for sparse matrix
operations and GMRES method [4].
Producer-Consumer Example. We implemented the synthesis
model for the producer-consumer example, as discussed in Sec-
tion 1. Candidate strategies were reduced from 76 = 117649 to
19 using LtWtPaCor procedure and we were able to synthesize
the two correct strategies S2 and S3 (with 9 more equivalent strate-
gies). We evaluated the strategies for worst case schedule and inputs
on 3 threads with the performance model P2 having only locking
cost. The value for strategy S2 was much better than that for S3 as
expected since S2 uses lesser number of locks in every execution.
Coarse-grained vs Fine-grained Locking. Consider the sketch
in Figure 7. The sketch (depicting remove method) provides six
choice blocks for synchronization between various methods (us-
ing locks). The contains and add methods use find subroutine
similar to remove method to perform their respective actions over
the shared list data structure implementing a set. The sketch en-
compasses two well known strategies for lock based synchroniza-
tion: Fine-Grained and Coarse-Grained locking. We find the opti-
mal strategy using worst-case analysis with various parameters in
the performance and usage models using Algorithm 1 and Algo-
rithm 2.
Parameters. We use a single state performance automaton with
locking cost (denoted by lc) and waiting cost (denoted by wc),
a usage model parameterized by three values: probabilities that
govern how often contains, add , remove are called (denoted by
the probabilities (pc:pa:pr)).We consider 6 clients (all 2-method
parallel clients). As shown in section 5, these clients are sufficient
to guarantee linearizability for all possible clients (on any number
of threads).

The sketch in Figure 7 also gives rise to 117649 different
list data structure implementations i.e., the synchronizer has these
many different memoryless strategies in the corresponding game.
First, the static analysis (LtWtPaCor) is applied. Then, we per-

13 2010/7/17

UsM Costs(lc,wc) CG FG FG’ CF
u1(90:9:1) (2, 1) 1.55 2.27 2.28 2.43
u1(90:9:1) (1, 1) 1.05 1.27 1.29 1.56
u2(50:45:5) (1, 1) 1.17 1.27 1.31 1.75
u3(1:1:1) (1, 1) 1.31 1.27 1.28 1.78
u3(1:1:1) (1, 2) 2.05 1.62 1.63 2.62

UsM (5, 1) (2, 1) (1, 1) (1, 2) (1, 5)
u1(90:9:1) CG CG CG FG FG

u2(50:45:5) CG CG CG FG FG
u3(1:1:1) CG CG FG FG FG

Table 1. Perf. costs and Best strategies for CG vs FG locks

form a stricter partial correctness check with production of the
explicit state graph for the candidate strategy (using SPIN model
checker [19]). Then, we perform a complete correctness (lineariz-
ability) check which produces a counter-example in case the strat-
egy is incorrect. We use this counter-example to efficiently prune
the list of strategies. Note that we use the improved linearizabil-
ity check from Section 3.4 for the complete correctness check. The
correctness check without these improvements are too expensive to
repeat for each strategy.

The initial static analysis (LtWtPaCor) takes less than a second.
The number of strategies that are left (i.e. |LS |) is only 72. We then
perform the stricter partial correctness check which took around
5 to 10 seconds on each strategy and eliminates 26 strategies.
We then perform correctness checks with counter-example based
elimination on the remaining strategies. A complete correctness
check takes around a minute for each strategy. However, counter-
example based elimination is almost instantaneous and the first and
second counter-examples eliminate 25 and a further 15 strategies
respectively. We then obtain the 4 correct strategies for which we
perform the worst case analysis. These 4 strategies are evaluated
with the performance model and a usage model using worst case
analysis, as described in Algorithm 2. The evaluation for all 6 (two-
method) clients takes around 2 to 5 seconds per strategy. The total
time for synthesis is around 11 minutes.

We denote the four correct strategies as FG, CG, FG′, and
CF . The FG (Fine-Grained) and CG(Coarse-Grained) strategies
correspond to standard synchronization methods via locking. The
FG′ strategy is similar to FG except for the fact that it unlocks the
curr and pred pointers in the reverse order and hence, delaying
the other thread longer in some runs. CF strategy uses both fine
and coarse grained locks and is always more expensive.

We consider three usage models (Contains:Add:Remove)
u1(90:9:1), u2(50:45:5), and u3(1:1:1) (as suggested in [17]) and
some performance models with various locking and waiting costs
(lc,wc). The best strategy for each pair of input parameters and the
performance costs of each correct strategy for some cost models
are summarized in Table 1.

In conclusion, we were able to synthesize both fine-grained
and coarse-grained locking strategies and show that performance
of strategies varies with both performance cost parameters as well
as the usage model. Although FG strategy provides opportunity
for more concurrency, the cost of invoking locking and unlocking
routines can make it perform worse than CG locking strategy. These
results demonstrate the flexibility of quantitative game models for
performance-based synthesis of concurrent programs.
Lazy-List Synthesis. Consider the sketch in Figure 8 which en-
compass three different strategies for lock and marking based syn-
chronization.The choice block description and the find subroutine
is the similar to the previous example except that the find sub-
routine is now lock-free. The add method has the same structure
as the remove method except that it does not mark any nodes of

UsM (1, 0, 0) (5, 1, 1) (0, 1, 0) (1, 1, 5) (5, 3, 2)
u1 gCG/lCG gCG lCG/lFG gCG lCG

u2 gCG/lCG lCG lCG/lFG gCG lCG

u3 gCG/lCG lCG lCG/lFG gCG lCG

UsM Costs(lc,wc,sc) lFG lCG gCG

u1(90:9:1) (5, 1, 1) 1.83 1.29 1.24
u1(90:9:1) (5, 3, 2) 2.57 2.01 2.99
u2(50:45:5) (5, 1, 1) 1.35 0.98 1.03
u2(50:45:5) (1, 1, 5) 2.62 2.62 1.56
u3(1:1:1) (5, 1, 1) 1.31 1.27 1.28
u3(1:1:1) (0, 1, 0) 0.10 0.10 0.89
u3(1:1:1) (1, 1, 1) 0.71 0.63 0.95

Table 2. The best strategies for Lazy-List sketch

the shared list. The contains method is lock-free but checks for
marks for deciding presence or absence of a node.

Note that we do not synthesize the marking strategy, and the ex-
pression !pred.marked && !curr.marked && pred.next ==
curr is hard-coded into the sketch as it does not affect the perfor-
mance analysis (which we are demonstrating in this example).

The three main strategies allowed by this sketch are delayed
Fine-Grained Lazy (commonly Lazy synchronization) (lFG), global
Coarse-Grained Locking (gCG) and delayed Coarse-Grained Lazy
(lCG) synchronization which uses a global lock after traversing the
list. We find the optimal strategy for various performance and usage
model parameters using average case analysis in Algorithm 1.
Parameters. The performance model we consider is similar to the
one from the previous case study. However, it includes a cost sc for
each context switch. We perform average-case analysis in this case
study with a uniform scheduler (shown in Figure 5). We use the
same clients and usage models as in the previous example.

The sketch in Figure 8 gives rise to 117649 different im-
plementations. As in the previous case the initial static analy-
sis (LtWtPaCor) reduced the number of strategies to a few (23)
and counter-example based elimination removes the rest of the
wrong strategies using just 2 counter-examples. We then obtain
the 6 correct strategies. We perform the average case analysis for
these strategies. The evaluation for all 6 (two-method) clients takes
around 2 minutes per strategy. The overall time for synthesis is
around 20 minutes. We summarize the results for synthesis and
present the values for the three optimal strategies in Table 6.

We observe that for performance cost values like (5, 3, 2) and
(1, 1, 1), the best strategy is the hybrid lCG strategy which is
achieves a fine balance between the locks used and idling time.
We implemented the hybrid lCG strategy in Java and observed that
it performed favorably to the others on a desktop computer under
some conditions. The results again demonstrate the flexibility of
quantitative game framework for synthesis of concurrent programs.

public boolean remove(Node item) {
choice C1; //should be head.lock() or skip
(pred, curr) = find(head, item);
while(true)

choice C1; //should be pred.lock();
choice C1; //should be curr.lock();
if(!pred.marked && !curr.marked && pred.next == curr)

if (curr.key == node.key)
curr.marked = true; //logically remove
pred.next = curr.next; //physically remove
ret = true;

else
ret = false;

choice C1; //should be pred.unlock()
choice C1; //should be curr.unlock()

choice C1;//should be head.unlock() or skip
return ret;

Figure 8. Lazy-List sketch

14 2010/7/17

References
[1] Full version. http://pub.ist.ac.at/ cernyp/popl11synth.pdf.
[2] Lemon graph library. http://lemon.cs.elte.hu/trac/lemon.
[3] D. Amit, N. Rinetzky, T. Reps, M. Sagiv, and E. Yahav. Comparison

under abstraction for verifying linearizability. In CAV, 2007.
[4] E. Bertolazzi. Sparselib: A c++ class library for big vector and sparse

matrices, 1999.
[5] R. Bloem, K. Chatterjee, T. Henzinger, and B. Jobstmann. Better

quality in synthesis through quantitative objectives. In CAV, 2009.
[6] S. Burckhardt, R. Alur, and M. Martin. Checkfence: checking consis-

tency of concurrent data types on relaxed memory models. In PLDI,
2007.

[7] S. Burckhardt, C. Dern, M. Musuvathi, and R. Tan. Line-up: a com-
plete and automatic linearizability checker. In PLDI, 2010.

[8] P. Černý, A. Radhakrishna, D. Zufferey, S. Chaudhuri, and R. Alur.
Model checking of linearizability of concurrent list implementations.
In CAV, 2010.

[9] K. Chatterjee, T. A. Henzinger, B. Jobstmann, and R. Singh. Measur-
ing and synthesizing systems in probabilistic environments. In CAV,
2010.

[10] A. Church. Logic, arithmetic, and automata. In Proceedings of the
International Congress of Mathematicians, 1962.

[11] E. Clarke and E. Emerson. Design and synthesis of synchronization
skeletons using branching time temporal logic. In Proc. Workshop on
Logic of Programs, 1981.

[12] A. Dasdan and R. K. Gupta. Faster maximum and minimum mean
cycle algorithms for system performance analysis. IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems, 17,
1997.

[13] A. Degorre, L. Doyen, R. Gentilini, J.-F. Raskin, and S. Toruńczyk.
Energy and mean-payoff games with imperfect information. In CSL,
2010. To appear.

[14] E. Feinberg and A. Shwartz, editors. Handbook of Markov Decision
Processes - Methods and Applications. 2002.

[15] J. Filar and K. Vrieze. Competitive Markov decision processes. 1996.
[16] T. L. Harris. A pragmatic implementation of non-blocking linked-lists.

In DISC, 2001.
[17] S. Heller, M. Herlihy, V. Luchangco, M. Moir, W. Scherer, and

N. Shavit. A lazy concurrent list-based set algorithm. In OPODIS,
2005.

[18] M. Herlihy and J. Wing. Linearizability: A correctness condition for
concurrent objects. ACM Trans. Prog. Lang. Syst., 12, 1990.

[19] G. Holzmann. The SPIN Model Checker: Primer and Reference
Manual. Addison-Wesley, 2003.

[20] Y. Liu, W. Chen, Y. Liu, and J. Sun. Model checking linearizability
via refinement. In FM, 2009.

[21] M. Michael and M. Scott. Correction of a memory management
method for lock-free data structures. Technical report, U. of Rochester,
1995.

[22] A. Pnueli and R. Rosner. On the synthesis of a reactive module. In
POPL, 1989.

[23] M. Segalov, T. Lev-Ami, R. Manevich, G. Ramalingam, and M. Sagiv.
Abstract transformers for thread correlation analysis. In APLAS, 2009.

[24] A. Solar-Lezama, C. Jones, and R. Bodı́k. Sketching concurrent data
structures. In PLDI, 2008.

[25] A. Solar-Lezama, R. M. Rabbah, R. Bodı́k, and K. Ebcioglu. Program-
ming by sketching for bit-streaming programs. In PLDI, 2005.

[26] V. Vafeiadis. Automatically proving linearizability. In CAV, 2010.
[27] M. Vechev, E. Yahav, and G. Yorsh. Abstraction-guided synthesis of

synchronization. In POPL, 2010.

15 2010/7/17

