

Simulation Distances

Pavol Černý, Thomas A. Henzinger, and Arjun Radhakrishna

IST Austria (Institute of Science and Technology Austria)

Am Campus 1

A-3400 Klosterneuburg

Technical Report No. IST-2010-0003

http://pub.ist.ac.at/Pubs/TechRpts/2010/IST-2010-0003.pdf

June 14, 2010

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by IST Austria: PubRep (Institute of Science and Technology)

https://core.ac.uk/display/268224808?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://pub.ist.ac.at/Pubs/TechRpts/2009/IST-2009-002.pdf

Copyright © 2010, by the author(s).

All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or
distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. To copy otherwise, to republish, to post on
servers or to redistribute to lists, requires prior specific permission.

Simulation Distances⋆

Pavol Černý, Thomas A. Henzinger, and Arjun Radhakrishna

IST Austria

Abstract. Boolean notions of correctness are formalized by preorders on
systems. Quantitative measures of correctness can be formalized by real-
valued distance functions between systems, where the distance between
implementation and specification provides a measure of “fit” or “desir-
ability.” We extend the simulation preorder to the quantitative setting,
by making each player of a simulation game pay a certain price for her
choices. We use the resulting games with quantitative objectives to define
three different simulation distances. The correctness distance measures
how much the specification must be changed in order to be satisfied by
the implementation. The coverage distance measures how much the im-
plementation restricts the degrees of freedom offered by the specification.
The robustness distance measures how much a system can deviate from
the implementation description without violating the specification. We
consider these distances for safety as well as liveness specifications. The
distances can be computed in polynomial time for safety specifications,
and for liveness specifications given by weak fairness constraints. We
show that the distance functions satisfy the triangle inequality, that the
distance between two systems does not increase under parallel composi-
tion with a third system, and that the distance between two systems can
be bounded from above and below by distances between abstractions of
the two systems. These properties suggest that our simulation distances
provide an appropriate basis for a quantitative theory of discrete sys-
tems. We also demonstrate how the robustness distance can be used to
measure how many transmission errors are tolerated by error correcting
codes.

1 Introduction

Standard verification systems return a boolean answer that indicates whether a
system satisfies its specification. However, not all correct implementations are
equally good, and not all incorrect implementations are equally bad. There is
thus a natural question whether it is possible to extend the standard specification
frameworks and verification algorithms to capture a finer and more quantitative
view of the relationship between specifications and systems.

We focus on extending the notion of simulation to the quantitative setting.
For reactive systems, the standard correctness requirement is that all executions

⋆ This work was partially supported by the European Union project COMBEST and
the European Network of Excellence ArtistDesign.

of an implementation have to be allowed by the specification. Requiring that
the specification simulates the implementation is a stricter condition, but it
is computationally less expensive to check. The simulation relation defines a
preorder on systems. We extend the simulation preorder to a distance function
that given two systems, returns a real-valued distance between them.

Let us consider the definition of simulation of an implementation I by a spec-
ification S as a two-player game, where Player 1 (the implementation) chooses
moves (transitions) and Player 2 (the specification) tries to match each move.
The goal of Player 1 is to prove that simulation does not hold, by driving the
game into a state from which Player 2 cannot match the chosen move; the goal
of Player 2 is to prove that there exists a simulation relation, by playing the
game forever. In order to extend this definition to capture how “good” (or how
“bad”) the simulation is, we make the players pay a certain price for their choices.
The goal of Player 1 is then to maximize the cost of the game, and the goal of
Player 2 is to minimize it. The cost is given by an objective function, such as the
limit average of transition prizes. For example, for incorrect implementations,
i.e., those for which the specification S does not simulate the implementation I,
we might be interested in how often the specification (Player 2) cannot match
an implementation move. We formalize this using a game with a limit-average
objective between modified systems. The specification is allowed to “cheat,” by
following a non-existing transition, while the implementation is left unmodified.
More precisely, the specification is modified by giving the transitions from the
original system a weight of 0, and adding new “cheating” transitions with a non-
zero positive weight. As Player 2 is trying to minimize the value of the game,
she is motivated not to cheat. The value of the game measures how often the
specification can be forced to cheat by the implementation, that is, how often the
implementation violates the specification (i.e., commits an error) in the worst
case. We call this distance function correctness.

Let us consider the examples in Figure 1. We take the system S1 as the
specification. The specification allows at most two symbols b to be output in
the row. Now let us consider the two incorrect implementations I3 and I4. The
implementation I3 outputs an unbounded number of b’s in a row, while the
implementation I4 can output three b’s in a row. The specification S1 will thus
not be able to simulate either I3 or I4, but I4 is a “better” implementation in
the sense that it violates the requirement to a smaller degree. We capture this
by allowing S1 to cheat in the simulation game by taking an existing edge while
outputting a different symbol. When simulating the system I3, the specification
S1 will have to output a b when taking the edge from state 2 to state 0. This
cheating transition will be taken every third move while simulating I3. The
correctness distance from S1 to I3 will therefore be 1/3. When simulating I4,
the specification S1 needs to cheat only one in four times—this is when I4 takes
a transition from its state 2 to state 3. The distance from S1 to I4 will be 1/4.

Considering the implementation I2 from Figure 1, it is easy to see that it
is correct with respect to the specification S1. The correctness distance would
thus be 0. However, it is also easy to see that I2 does not include all behav-

0 1 2

a

b b

a

a

(a) S1

0 1

a

b

a

(b) I2

0

b

(c) I3

0 1 2 3
b b b

a

(d) I4

Fig. 1. Example Systems

iors allowed by S1. Our second distance function, coverage, is the dual of the
correctness distance. It measures how many of the behaviors allowed by the
specification are actually implemented by the implementation. This distance is
obtained as the value for the implementation in a game in which I is required to
simulate S, with the implementation being allowed to cheat. Our third distance
function is called robustness. It measures how robust the implementation I is
with respect to the specification S in the following sense: we measure how often
the implementation can make an unexpected error (i.e., it performs a transition
not present in its transition relation), with the resulting behavior still being
accepted by the specification. Unexpected errors could be caused, for example,
by a hardware problem, by a wrong environment assumption, or by a malicious
attack. Robustness measures how many such unexpected errors are tolerated.

In addition to safety specifications, we consider liveness specifications given
by weak (Büchi) fairness constraints or strong (Streett) fairness constrains. In
order to define distances to liveness specifications, the notion of quantitative
simulation is extended to fair quantitative simulation. We study variations of
the correctness, coverage, and robustness distances using limit-average and dis-
counted objective functions. Limit-average objectives measure the long-run fre-
quency of errors, whereas discounted objectives count the number of errors and
give more weight to earlier errors than later ones.

The correctness, coverage, and robustness distances can be calculated by
solving the value problem in the corresponding games. Without fairness require-
ments, we obtain limit-average games or discounted games with constant weights.
The values of such games can be computed in polynomial time [23]. We obtain
polynomial complexity also for distances between systems with weak-fairness
constraints, whereas for strong-fairness constrains, the best known algorithms
require exponential time.

We present composition and abstraction techniques that are useful for com-
puting and approximating simulation distances between large systems. We prove
that distance from a composite implementation I1 ‖ I2 to a composite specifica-
tion S1 ‖ S2 is bounded by the sum of distances from I1 to S1 and from I2 to S2.
Furthermore, we show that the distance between two systems can be bounded
from above and below by distances between abstractions of the two systems.

Finally, we present an application of the robustness distance. We consider
error correction systems for transmitting data over noisy channels. Three im-
plementations based on the Hamming code, triple modular redundancy, and no
error correction with different robustness properties are analyzed.

Related work Weighted automata [4, 2, 11] provide a way to assign values to
words, and to languages defined by finite-state systems. Distances between
systems can be defined using weighted automata, analogically to boolean lan-
guage inclusion. However, the complexity of computation of such distance is not
known [4, 5]. Our solution of using a quantitative version of simulation games
corresponds in the boolean case to the choice of using simulation instead of
language inclusion. There have been several attempts to give a mathematical se-
mantics to reactive processes which is based on quantitative metrics rather than
boolean preorders [21, 7]. In particular for probabilistic processes, it is natural
to generalize bisimulation relations to bisimulation metrics [10, 22], and simi-
lar generalizations can be pursued if quantities enter not through probabilities
but through discounting [8] or continuous variables [3] (this work uses the Sko-
rohod metric on continuous behaviors to measure the distance between hybrid
systems). We consider distances between purely discrete (nonprobabilistic, un-
timed) systems, and our distances are directed rather than symmetric (based on
simulation rather than bisimulation). Software metrics measure properties such
as lines of code, depth of inheritance (in an object-oriented language), number
of bugs in a module or the time it took to discover the bugs (see for example [13,
17]). These functions measure syntactic properties of the source code, and are
fundamentally different from our distance functions that capture the difference
in the behavior (semantics) of programs.

2 Quantitative Simulation Games

Transition Systems. A transition system is a tuple 〈S, Σ, E, s0〉 where S is a
finite set of states, Σ is a finite alphabet, E ⊆ S × Σ × S is a set of labeled
transitions, and s0 is the initial state. We require that for every s ∈ S, there exists
a transition from s. The set of all transition systems is denoted by S. A weighted
transition system is a transition system along with a weight function v from
E to Q. A run in a transition system T is an infinite path ρ = ρ0σ0ρ1σ1ρ2σ2 . . . ∈
(S · Σ)ω where ρ0 = s0 and for all i, (ρi, σi, ρi+1) ∈ E.
Fairness Conditions. A Büchi (weak fairness) condition for a (weighted) tran-
sition system is set of states F ⊆ S. Given a Büchi condition F and a run ρ =
ρ0σ0ρ1σ1 . . . of a transition system, the run ρ is fair iff ∀n ≥ 0 : (∃i > n : ρi ∈ F).
A Streett (strong fairness) condition for a (weighted) transition system is a
set of request-response pairs F = {〈E1, F1〉, 〈E2, F2〉, . . . , 〈Ed, Fd〉} where each
Ei, Fi ∈ 2S. Given a Streett condition, a run ρ = ρ0σ0ρ1σ1 . . . is fair iff
∀k ≤ d :

(

(|{i | ρi ∈ Ek}| = ∞) ⇒ (|{i | ρi ∈ Fk}| = ∞)
)

. We denote a transition
system A with a fairness condition F as AF .
Game Graphs. A game graph G is a tuple 〈S, S1, S2, Σ, E, s0〉 where S, Σ, E
and s0 are as in transition systems and (S1, S2) is a partition of S. The choice
of the next state is made by Player 1 (Player 2) when the current state is in S1

(respectively, S2). A weighted game graph is a game graph along with a weight
function v from E to Q. A run in the game graph G is called a play. The set of
all plays is denoted by Ω.

When the two players represent the choices internal to a system, we call
the game graph an alternating transition system. We only consider alternating
transition systems where the transitions from Player 1 states go only to Player 2
states and vice-versa. We use AF to denote an alternating transition system A
with fairness condition F .

Strategies. Given a game graph G, a strategy for Player 1 is a function π :
(S · Σ)∗S1 → S × Σ such that ∀s0σ0s1σ1 . . . si ∈ (S · Σ)∗S1, we have that if
π(s0σ0s1σ1 . . . si) = (s, σ), then (si, σ, s) ∈ E. A strategy for Player 2 is defined
in a similar way. The set of all strategies for Player p is denoted by Πp. A play
ρ = ρ0σ0ρ1σ1ρ2σ2 . . . conforms to a player p strategy π if ∀i ≥ 0 : (ρi ∈ Sp =⇒
: (ρi+1, σi+1) = π(ρ0σ0ρ1σ1 . . . ρi)). The outcome of a Player 1 strategy π1 and
a Player 2 strategy π2 is the unique play out(π1 , π2) that conforms to both π1

and π2.

Two restricted notions of a strategy are sufficient for many classes of games.
A memoryless strategy is one where the value of the strategy function depends
solely on the last state in the history, whereas a finite-memory strategy is one
where the necessary information about the history can be summarized by a finite
amount of information.

Games and Objectives. A game is a game graph and a boolean or quantitative
objective. A boolean objective is a function Φ : Ω → {0, 1} and the goal of
Player 1 in a game with objective Φ is to choose a strategy so that, no matter
what Player 2 does, the outcome maps to 1; and the goal of Player 2 is to
ensure that the outcome maps to 0. A quantitative objective is a value function
f : Ω → R and the goal of Player 1 is to maximize the value f of the play,
whereas the goal of Player 2 is to minimize it. We only consider quantitative
objectives with which map plays to values in [0, 1]. Given a boolean objective Φ,
a play ρ is winning for Player 1 (Player 2) if Φ(ρ) = 1 (Φ(ρ) = 0). A strategy
π is a winning strategy for Player p if every play conforming to π is winning for
Player p.

For a quantitative objective f , the value of the game for a Player 1 strategy
π1, denoted by ν1(π1), is defined as the minimum value of the outcome of the
play resulting from a Player 2 strategy, i.e., ν1(π1) = infπ2∈Π2

f(out(π1 , π2)).
The value of the game for Player 1 is defined as the supremum of the values
of all Player 1 strategies, i.e., supπ1∈Π1

ν1(π1). The value of a Player 2 strategy
π2 and the value of the game for Player 2 are defined analogously as ν2(π2) =
supπ1∈Π1

f(out(π1 , π2)) and infπ2∈Π2
ν2(π2). A strategy is an optimal strategy

for a player if the value of the strategy for that player is equal to the value of
the game. Similarly, a strategy is an ǫ-optimal strategy for a maximizing (resp.
minimizing) player if the value of the strategy for that player is no more that ǫ
smaller (resp. larger) than the value of the game.

We consider ω-regular boolean objectives and the following quantitative
objectives. Given a game graph with the weight function v and a play ρ =
ρ0ρ1ρ2 . . ., for all i ≥ 0, let vi = v((ρi, σi, ρi+1)).

– LimAvg(ρ) = lim infn→∞
1
n
·
∑n−1

i=0 vi

– Discλ(ρ) = lim infn→∞(1 − λ) ·
∑n−1

i=0 λi · vi where 0 < λ < 1.

LimAvg is the long-run average of the weights occurring in a play, whereas Discλ

is the discounted sum of the weights. Therefore, LimAvg gives more importance
to the infinite suffix of a play whereas Discλ gives more importance to the finite
prefix of a play.

Note that for LimAvg and Disc objectives, optimal memoryless strategies
exist for both players [12, 23]. Also, for qualitative objectives specified as Büchi
conditions, memoryless winning strategies exist for both players, and for other
ω-regular conditions, finite-memory winning strategies exist.

Also, consider the following family of objectives where a boolean ω-regular
objective and a quantitative objective f are combined as follows. If a play ρ
satisfies the boolean objective, then the value of ρ is the value according to f ;
otherwise, the value of the ρ is the maximum possible value of f (in our case, it is
always 1). When f = LimAvg and the ω-regular objective is a parity objective,
ǫ-optimal finite-memory strategies exist [6]. This result can be extended to arbi-
trary ω-regular objectives as all ω-regular objectives can be expressed as parity
objectives with the latest appearance records memory [14]. Such objectives are
called ω-regular LimAvg objectives.

2.1 Qualitative Simulation Games

The simulation preorder [19] is a useful and polynomially computable relation to
compare two transition systems. In [1] this relation was extended to alternating
simulation between alternating transition systems. For systems with fairness
conditions, the simulation relation was extended to fair simulation in [16]. These
relations can be computed by solving games with boolean objectives.
Simulation and Alternating Simulation. Consider two transition systems
A = 〈S, Σ, E, s0〉 and A′ = 〈S′, Σ, E′, s′0〉. The system A′ simulates the system
A if there exists a relation H ⊆ S×S′ such that (a) (s0, s

′
0) ∈ H ; and (b) ∀s, t ∈

S, s′ ∈ S′ : (s, s′) ∈ H ∧ (s, σ, t) ∈ E ⇒ (∃t′ : (s′, σ, t′) ∈ E′ ∧ (s′, t′) ∈ H).
For two alternating transition systems A = 〈S, S1, S2, Σ, E, s0〉 and A′ =

〈S′, S′
1, S

′
2, Σ, E′, s′0〉, alternating simulation of A by A′ holds if there exists a

relation H ⊆ S × S′ such that (s0, s
′
0) ∈ H and ∀s ∈ S, s′ ∈ S′ : (s, s′) ∈ H ⇒

(s ∈ S1 ⇔ s′ ∈ S′
1); and

– ∀s ∈ S, s′ ∈ S′ : ((s, s′) ∈ H ∧ s ∈ S1) ⇒ ∀(s, σ, t) ∈ E : (∃(s′, σ, t′) ∈ E′ :
(t, t′) ∈ H).

– ∀s ∈ S, s′ ∈ S′ : ((s, s′) ∈ H ∧ s ∈ S2) ⇒ ∃(s′, σ, t′) ∈ E′ : (∀(s, σ, t) ∈ E :
(t, t′) ∈ H).

Simulation and Alternating Simulation Games. Given two (alternating)
transition systems, A and A′, we can construct a game GA,A′ (HA,A′) such that,
(alternating) simulation of A by A′ holds if and only if Player 2 has a winning
strategy in GA,A′ (HA,A′). We define quantitative simulation game graphs. The
quantitative version of these game graphs are not necessary to define the classical
simulation and alternating simulation games. However, they are introduced here
as they will be used later to define quantitative simulation games.

Given two weighted transition systems A and A′ with the same alphabet, we
define the corresponding quantitative simulation game graph GA,A′ as 〈S× (Σ∪

{#})×S′∪{serr}, S
G
1 , SG

2 , Σ, EG, (s0, #, s′0)〉 where SG
1 = (S×{#}×S′)∪{serr}

and SG
2 = (S × Σ × S′). Each transition of the game graph corresponds to a

transition in either A or A′ as follows:

– ((s, #, s′), σ, (t, σ, s′)) ∈ EG ⇔ (s, σ, t) ∈ E
– ((s, σ, s′), σ, (s, #, t′)) ∈ EG ⇔ (s′, σ, t′) ∈ E′

For each of the above transitions, the weight is the same as the weight of the
corresponding transition in A or A′. If there is no outgoing transition from a
particular state, transitions to serr are added with all symbols. The state serr

is a sink with transitions to itself on all symbols. Each of these transitions has
weight 1 (the maximum possible value of a quantitative objective).

For classical simulation games, we consider the same game graph without
weights. Now, the boolean objective for the simulation game is as follows. If
the play can proceed ad infinitum without reaching serr, then Player 2 wins. If
the play arrives at the serr state, then Player 1 wins. We denote this classical
simulation game as GA,A′ . Intuitively, in every state, Player 1 chooses a transition
of A and Player 2 has to match it by picking a transition of A′. If Player 2 cannot
match at some point, Player 1 wins that play. It is easy to see that A′ simulates
A iff there is a winning strategy for Player 2 in GA,A′ .

We can extend the simulation game to an alternating simulation game. We
informally define the quantitative alternating simulation game graph. Given two
quantitative alternating transition systems A and A′ with the same alphabet and
having the initial states s0 and s′0 such that s0 ∈ S1 ⇔ s′0 ∈ S′

1, the quantitative
alternating simulation game graph HA,A′ intuitively works as follows. If A is at
state s and s ∈ S1, Player 1 chooses a transition of A and Player 2 has to match
it with a transition of A′; and if A is at s and s ∈ S2, Player 2 has to choose
a transition of A′ and Player 1 has to choose a transition of A to match it. If
there cannot be a match, the control moves to the error state serr. As before, the
transitions have the same weight as in the individual systems.

Formally, given two quantitative alternating transition systems A =
〈S, S1, S2, Σ, E, s0, v〉 and A′ = 〈S′, S′

1, S
′
2, Σ, E′, s′0, v

′〉 with the same alphabet,
the alternating simulation game graph HA,A′ = 〈SH , SH

1 , SH
2 , Σ, EH , sH

0 , vH〉 is:

– The alphabet is the same as the alphabet of A and A′. The initial state is
(s0, #, s′0, p) where p is 1 (2) if s0 and s′0 are both Player 1 (respectively,
Player 2) states. Note that if one of them is a Player 1 state and the other
is a Player 2 state, then alternating simulation of A by A′ cannot hold and
hence, we do not define the game graph for such cases.

– Player 1 states of the graph are SH
1 = {(s, #, s′, 1) | s ∈ S1 ∧ s′ ∈ S′

1} ∪
{(s, σ, s′, 1) | s ∈ S2 ∧ s′ ∈ S′

1 ∧ σ ∈ Σ} ∪ {serr}. The first set of the union
represents the states where Player 1 has to choose a transition for Player 2
to match and the second set represents the states where Player 2 has already
chosen a transition with the symbol σ and Player 1 has to match it. State
serr is an error state.

– Player 2 states of the graph are SH
2 = {(s, #, s′, 2) | s ∈ S2 ∧ s′ ∈ S′

2} ∪
{(s, σ, s′, 2) | s ∈ S2 ∧ s′ ∈ S′

1 ∧ σ ∈ Σ}. The sets in this union are analogous
to the ones in Player 1 states.

– The transitions correspond to A or A′ transitions as follows:
• Suppose (s, σ, t) ((s′, σ, t′)) is transition of A (A′) and (s, #, s′, 1)

((s, #, s′, 2)) is a Player 1 (Player 2) state. We have the correspond-
ing transition ((s, #, s′, 1), σ, (t, σ, s′, 2)) (((s, #, s′, 2), σ, (s, σ, t′, 1))) in
EH , i.e., in states where Player 1 has to choose a transition of A, the
A component of the state and the symbol are changed to the destina-
tion and the symbol of the A transition respectively. The same holds for
Player 2 states.

• If (s, σ, t) ((s′, σ, t′)) is a transition in A (A′) and (s, σ, s′, 1) ((s, σ, s′, 2))
is a Player 1 (Player 2) state, we have the corresponding transi-
tion ((s, σ, s′, 1), σ, (t, #, s′, 1)) (((s, σ, s′, 2), σ, (s, #, t′, 2))) in EH . Here,
Player 1 (Player 2) chooses a transition to match the previous move of
Player 2 (Player 1). The A component of the state is changed accordingly
and the symbol is reset to #.

The weight of each transition is equal to the weight of the corresponding A
or A′ transition.

– If there is no outgoing transition from a particular state, we add weight 1
transitions to serr as in the previous game graph.

We consider the game graph without weights to define the alternating simu-
lation game HA,A′

and the objective of the Player 1 is to ensure that the play
reaches serr. It can be seen that alternating simulation holds iff there exists a
winning strategy for Player 2 .

Fair Simulation. Given two (alternating) transitions systems with fairness con-
ditions AF and A′F ′

, the fair simulation game is played in the same game graph
GA,A′ (HA,A′) as the simulation game. However, in addition to matching the
symbol in each step, Player 2 has to ensure that if the sequence of transitions of
A chosen by Player 1 satisfies the fairness condition F , then the sequence of A′

transitions chosen satisfy the fairness condition F ′.

2.2 Quantitative Simulation Games

We define a generalized notion of simulation games called quantitative simulation
games where the simulation objectives are replaced by quantitative objectives.

Quantitative Simulation Games. Given two quantitative (alternating) tran-
sition systems A and A′, and f ∈ {LimAvg,Discλ}, the quantitative (alter-
nating) simulation game is played on the quantitative (alternating) simulation
game graph GA,A′ (HA,A′) with the objective of Player 1 being to maximize the

f value of the play. We denote this game as Qf
A,A′ (Pf

A,A′).

Quantitative Fair Simulation Games. Analogous to quantitative (alternat-
ing) simulation games, the fair versions between two transition systems with
fairness conditions AF and A′F ′

are played on the same quantitative (alter-
nating) simulation game graph. The quantitative objective for this game is the
ω-regular LimAvg objective which is the combination of LimAvg objective and
the boolean fair (alternating) simulation game objective. If a play does not sat-
isfy the boolean objective, it is given a value of 1. The fairness conditions for

a quantitative (alternating) simulation game will be implicit when dealing with
systems with fairness conditions.

We do not use f = Discλ along with fairness conditions as the two objectives
are independent. The Discλ objectives mainly consider the finite prefix of a
play, whereas fairness conditions consider only the infinite suffix. Whenever a
quantitative (alternating) simulation game with Discλ objectives are mentioned,
it is understood that there are no fairness conditions on the systems.

2.3 Modification Schemes

We will use quantitative simulation games to measure various properties of sys-
tems. For computing these properties, we need to use small modifications of
the original systems. For example, when trying to compute the distance as the
number of errors an implementation commits, we add to the specification some
error recovery behavior. However, we impose strict rules on these modifications
to ensure that the modified system retains the structure of the original system.

A modification scheme is a function m from transition systems to quantitative
(alternating) transition systems, which can be computed using the following
steps: (a) Edges may be added to the transition system and each state may
be replaced by a local subgraph. All edges of the graph have to be preserved;
(b) Every edge of the system is associated with a weight from Q. We present
two examples of modification schemes.

Output Modification. This scheme is used to add behavior to a system
that allows it to output an arbitrary symbol while moving to a state specified by
an already existing transition. For every transition (s, σ, s′), transitions with dif-
ferent symbols are added to the system i.e., {(s, α, s′) | α ∈ Σ}. These transitions
are given a weight of 2 to prohibit their free use. All other transitions have the
weight zero. Given a system T , we denote the modified system as OutMod(T).

Error Modification. In a perfectly functioning system, errors may occur
due to unpredictable events. We model this with an alternating transition system
with one player modeling the original system (Player 1) and the other modeling
the controlled error (Player 2). At every state, Player 2 chooses whether or
not a error occurs by choosing one of the two successors. From one of these
states, Player 1 can choose the original successors of the state and from the
other, she can choose either one of the original successors or one of the error
transitions. We penalize Player 2 for the choice of not allowing errors to happen.

s

s′

s′′

c

¬c
E(s)

E(s) ∪ X(s)

Fig. 2. Graph for ErrMod

Given T = 〈S, Σ, E, s0〉 we define
ErrMod(T) to be the quantitative alternating
transition system obtained by replacing each
state s by the graph in Figure 2. If an er-
ror is allowed (modeled by the c edge), then
all transitions that differ from original transi-
tions only in the symbol are added (represented by X(s) in Figure 2). Only the
transitions labeled ¬c are given the weight 2. The rest are given the weight 0.
The system ErrMod∅(T) denotes a system where no additional transitions where

0

a

(a) I1

0 1 2 3 4
b b b b

a

(b) I5

0 1 2
b

b a

b

(c) SL

0 1
a

b

(d) IL

Fig. 3. Example Systems

introduced, only the states were replaced by a subgraph from Figure 2 (with X
being the empty set).
In addition to the above schemes, we define the trivial modification scheme
NoMod where no changes are made except to give every edge the weight 0.

3 Simulation Distances

Correctness Given a specification T2 and an implementation T1, such that
T1 is incorrect with respect to T2, the correctness distance measures the degree
of “incorrectness” of T1. The boolean (fair) simulation relation is very strict in
a certain way. Even a single nonconformant behavior can destroy this relation.
Here we present a game which is not as strict and measures the minimal number
of required errors, i.e. the minimal number of times the specification has to use
nonmatching symbols when simulating the implementation.

Definition 3.1 (Correctness distance). Let f = LimAvg or f = Discλ. The
correctness distance df

cor
(T1, T2) from system T1 to system T2 is the Player 1

value of the quantitative simulation game Cf
T1,T2

= Qf

NoMod(T1),OutMod(T2)
.

The game C can be intuitively understood as follows. Given two systems T1

and T2, we are trying to simulate the system T1 by T2, but the specification T2 is
allowed to make errors, to “cheat”, but she has to pay a price for such a choice. As
the simulating player is trying to minimize the value of the game, she is motivated
not to cheat. The value of the game can thus be seen as measuring how often
she can be forced to cheat, that is, how often on average the implementation
commits an error. If the implementation is correct (T2 simulates T1), then the
correctness distance is 0. The value of the game is either the LimAvg or the
Disc of the number of errors. If the objective f is LimAvg , then the value is the
long run average of the errors, whereas if the objective f is Discλ, the errors
which occur earlier are given more importance and the value is the discounted
sum of the position of the errors. Therefore, the Disc and LimAvg games are
concerned with prefixes and infinite suffixes of the behaviors respectively.

We present a few example systems and their distances here to demonstrate
the fact that the above game measures distances that correspond to intuition.
In Figure 3 and Figure 1, S1 is the specification system against which we want
to measure the systems I1 through I5. In this case, the specification says that
there cannot be more than two b’s in a row. Also, we have a specification with
a liveness condition SL against which we want to measure the implementation
IL. The distances between these systems according to the LimAvg correctness
game are summarized in Table 1.

T1 T2 dLimAvg
cor (T1, T2) dLimAvg

cov (T1, T2) d
LimAvg
rob

(T1, T2)

S1 S1 0 0 1
S1 I1 0 2/3 1/3
S1 I2 0 1/3 2/3
S1 I3 1/3 1 1
S1 I4 1/4 3/4 1
S1 I5 1/5 4/5 1
SL IL 1/2 1 1

Table 1. Distances according to the Correctness, Coverage and Robustness game

Among the systems which do not satisfy the specification S1, i.e. I3, I4 and
I5, we showed in the introduction that the distance from I3 to S1 is 1/3, while
the distance from I4 to S1 is 1/4. However, surprisingly the distance from I5 to
S1 is less than the distance from I4. In fact, the distances reflect on the long run
the number of times the specification has to err to simulate the implementation.

In case of the specification SL and implementation IL with liveness condi-
tions, the specification can take the left branch to state 0 to get a penalty of 1

2
or take the right branch to state 2 to get a penalty of 1. However, it needs to
take the right branch infinitely often to satisfy the liveness condition. To achieve
the distance of 1

2 , the specification needs infinite memory so that it can take the
right branch lesser and lesser number of times. In fact, if the specification has a
strategy with finite-memory of size m, it can achieve a distance of 1

2 + 1
2m

.

Coverage We present the dual game of the one presented above. Here, we mea-
sure the behaviors that are present in one system but not in the other system.
Given a specification T2 and an implementation T1, the coverage distance corre-
sponds to the behavior of the specification which is farthest from any behaviour
of the implementation. Hence, we have that the coverage distance from a system
T1 to a system T2 is the correctness distance from T2 to T1.

Definition 3.2 (Coverage distance). Let f = LimAvg or f = Discλ. The cov-
erage distance df

cov
(T1, T2) from system T1 to system T2 is the Player 1 value of

the quantitative simulation game Vf
T1,T2

= Qf

NoMod(T2),OutMod(T1).

V measures the distance from T1 to T2 as the minimal number of errors that
have to be committed by T1 to cover all the behaviors of T2. We present examples
of systems and their distances according to VLimAvg . We use the example systems
in Figures 3 and 1. The distances are summarized in Table 1.

Robustness Given a specification system and a correct implementation of the
specification, the notion of robustness presented here is a measure of the number
of errors by the implementation that makes it nonconformant to the specifica-
tion. The more such errors tolerated by the specification, the more robust the
implementation is with respect to the specification. In other words, the distance
measures the number of critical points, or points where an error will lead to
an unacceptable behavior. The lower the value of the robustness distance to a
given specification, the more robust an implementation is. In case of an incorrect
implementation, the simulation of the implementation does not hold irrespective
of implementation errors. Hence, in that case, the robustness distance will be 1.

Definition 3.3 (Robustness distance). Let f = LimAvg or f = Discλ. The ro-

bustness distance df
rob(T1, T2) from system T1 to system T2 is the Player 1 value of

the quantitative alternating simulation game Rf
T1,T2

= Pf

ErrMod(T1),ErrMod∅(T2)
.

The game RErrMod(T1),ErrMod∅(T2) is played in the following steps: (a) The
specification T2 chooses whether the implementation T1 is allowed to make an
error; (b) The implementation chooses a transition on the implementation sys-
tem. It is allowed to err based on the specification choice in the previous step;
and (c) Specification chooses a matching move to simulate the implementation.

The specification tries to minimize the number of moves where it prohibits
implementation errors (without destroying the simulation relation), whereas the
implementation tries to maximize it. Intuitively, the positions where the specifi-
cation cannot allow errors are the critical points for the implementation.

In the game played between S1 and S1, every position is critical. At each
position, if an error is allowed, the system can output three b’s in a row by
using the error transition to return to state 0 while outputting a b. The next two
moves can be b’s irrespective whether errors are allowed or not. This breaks the
simulation. Now, consider I1. This system can be allowed to err every two out of
three times without violating the specification. This shows that I1 is more robust
than S1 for implementing S1. The list of distances is summarized in Table 1.
Computation of Simulation Distances The computational complexity of
computing the three distances defined here is the same as solving the value
problem for the respective games.

For systems without fairness conditions, the dcor, dcov and drob games are
simple graph games with LimAvg or Discλ objectives. The decision problem
(deciding whether the value is greater than a given value) for these games is
in NP ∩ co-NP [23], but no PTIME algorithm is known. However, for LimAvg
objectives the existence of a pseudo-polynomial algorithm, i.e., polynomial for
unary encoded weights, implies that the computation of the distances can be
achieved in polynomial time. This is due to the fact that we use constant weights.
Using the algorithm of [23], in the case without fairness conditions dcor, dcov and
drob distances can be computed in time O((|S||S′|)3 · (|E||S′| + |E′||S|)) where
S and S′ are state spaces of the two transition systems; and E and E′ are the
sets of transitions of the two systems. A variation of the algorithm in [23] gives
a PTIME algorithm for the Discλ objectives (given a fixed λ).

For systems with Büchi (weak fairness) conditions, the corresponding games
are graph games with LimAvg parity games, for which the decision problem
is in NP ∩ co-NP. However, the use of constant weights and the fact that the
implication of two Büchi conditions can be expressed as a parity condition with
no more than 3 priorities leads to a polynomial algorithm. Using the algorithm
presented in [6], we get a O((|S||S′|)3 · (|E||S′| + |E′||S|)) algorithm.

For systems with Streett (strong fairness) conditions, the corresponding
games are graph games with LimAvg ω-regular conditions. For an ω-regular
LimAvg game of n states, we can use the latest appearance records to convert
into an equivalent parity game of 2O(n log(n)) states and edges; and n priorities.
The algorithm of [6] gives a 2O(n log(n)) algorithm where n = |S| · |S′|.

4 Properties of Simulation Distances

We present quantitative analogues of boolean properties of the simulation pre-
orders.
Triangle Inequality Classical simulation relations satisfy the reflexivity and
transitivity property which makes them preorders. In an analogous way, we show
that the correctness and coverage distances satisfy the quantitative reflexivity
and the triangle inequality properties. This makes them directed metrics [9].

Theorem 1. df
cor

is a directed metric for f ∈ {LimAvg,Discλ}, i.e.:
– ∀S ∈ S : df

cor
(S, S) = 0

– ∀S1, S2, S3 ∈ S : df
cor

(S1, S3) ≤ df
cor

(S1, S2) + df
cor

(S2, S3)

Proof: We will prove the result for systems with fairness conditions. The case
without fairness conditions is analogous. Consider any ǫ > 0. Let τ2 and τ3 be
ǫ
2 -optimal finite strategies for Player 2 in CS1,S2

and CS2,S3
respectively. Now, we

construct a finite-memory strategy τ∗ for Player 2 in CS1,S3
. If M2 and M3 are

the memories of τ2 and τ3 respectively, the memory of τ∗ will be M2 ×S2 ×M3.
The strategy τ∗ works as follows. Let the state of the game be (s1, #, s3) and
the memory of τ∗ be (m2, s2, m3).
– Let Player 1 choose to move according to the S1 transition (s1, σ1, s

′
1) to the

game state (s′1, σ1, s3). Consider the game position (s′1, σ1, s2) in CS1,S2
and

let the τ2 memory be at state m2. Say τ2 updates its memory to m′
2 and

chooses the successor (s′1, #, s′2) with transition symbol σ1. Let the corre-
sponding OutMod(S2) transition be (s2, σ1, s

′
2).

– If the transition (s2, σ1, s
′
2) exists in S2, then let σ′

2 = σ1. Otherwise, there
will exist (s2, σ2, s

′
2) in S2 for some σ2. Let σ′

2 = σ2. Now, consider the game
position (s′2, σ

′
2, s3) in CS2,S3

and the memory state m3 of τ3. Say τ3 updates
its memory to m′

3 and chooses the successor (s′2, #, s′3) and the transition
symbol σ′

2. Let the corresponding OutMod(S3) transition be (s3, σ
′
2, s

′
3).

– The memory of τ∗ is updated to (m′
2, s

′
2, m

′
3) and τ∗ chooses the succes-

sor (s′1, #, s′3) with the transition symbol σ1. The corresponding transition
(s3, σ1, s

′
3) exists in OutMod(S3) as there exists a transition with the same

source and destination as (s3, σ
′
2, s

′
3).

s1,0
σ1(v1,0)
−−−−−→ s1,1

σ1(v1,1)
−−−−−→ s1,2 . . .

s2,0
σ1(v2,0)
−−−−−→ s2,1

σ1(v2,1)
−−−−−→ s2,2 . . .

}

ρ1

s2,0
σ′
2
(v2,0)

−−−−−→ s2,1
σ′
2
(v2,1)

−−−−−→ s2,2 . . .

s3,0
σ1(v3,0)
−−−−−→ s3,1

σ1(v3,1)
−−−−−→ s3,2 . . .

ρ2

ρ

If Player 2 cannot match σ1

with a zero weight transition
while playing according to τ∗, ei-
ther τ2 or τ3 would have also taken
a non-zero weight transition. Us-
ing this fact, we can easily prove
the required property.

Fix an arbitrary finite-memory Player 1 strategy σ. Now, let the play proceed
according to the strategy τ∗. From the moves of the game and the state of the
memory of τ∗, we can extract four transitions for each round of play as above,
i.e. an S1 transition (s1, σ1, s

′
1), an OutMod(S2) transition (s2, σ1, s

′
2), an S2

transition (s2, σ
′
2, s

′
2) and an OutMod(S3) transition (s3, σ1, s

′
3). We depict the

situation in the above figure.

The play ρ in CS1,S3
corresponds to the transitions in the first and the last

rows. This play can be decomposed into plays ρ1 and ρ2 in CS1,S2
and CS2,S3

by
taking only the transitions in the first two and last two rows respectively. Now,
by the observation in the previous paragraph, each move in ρ has weight 2 only
if one of the corresponding moves in ρ1 or ρ2 have weight 2. Let us denote the

nth move in a play η by ηn. If both S1 and S3 sequence of moves in ρ are fair
or if S1 sequence is unfair, we have the following for the LimAvg case.

ν(ρ) = lim inf
n→∞

1

n

n
∑

i=0

v(ρi) ≤ lim inf
n→∞

1

n

n
∑

i=0

(

v(ρi
1) + v(ρi

2)
)

= lim
n→∞

1

n

n
∑

i=0

(

v(ρi
1) + v(ρi

2)
)

= lim
n→∞

1

n

n
∑

i=0

v(ρi
1) + lim

n→∞

1

n

n
∑

i=0

v(ρi
2)

= lim inf
n→∞

1

n

n
∑

i=0

v(ρi
1) + lim inf

n→∞

1

n

n
∑

i=0

v(ρi
2)

≤ dcor(S1, S2) +
ǫ

2
+ dcor(S2, S3) +

ǫ

2
= dcor(S1, S2) + dcor(S2, S3) + ǫ

In the above set of equations we use limit and limit infimum interchangeably.
This can be done because all the strategies we are considering are finite-memory,
and hence, each sequence of weights is ultimately repeating. Hence, the limit
infimum of the average of such a sequence is equal to the limit of the average of
the sequence and it converges to the average weight of the repeating sequence.
The case for Discλ is much simpler and not shown here.

Hence, we have that the value of the play satisfies the required inequality
for the case that both S1 and S3 perform fair computations. In the case that
S1 sequence is fair and S3 sequence is not fair, the value of the play will be 1.
However, by construction the value of either ρ1 or ρ2 will also be 1 and hence
the inequality holds.

Therefore, given an epsilon, we have demonstrated a finite-memory strategy
for Player 2 such that, for every finite-memory Player 1 strategy, the value of the
game is less than dcor(S1, S2) + dcor(S2, S3) + ǫ for both the LimAvg and Discλ

case. Hence, we have the required triangle inequality.
It can be shown by construction of a Player 2 strategy that copies every

Player 1 move that dcor(S, S) = 0. Hence, we have the result.

Theorem 2. df
cov

is a directed metric when f ∈ {LimAvg,Discλ}, i.e. :
– ∀S ∈ S : df

cov
(S, S) = 0

– ∀S1, S2, S3 ∈ S : df
cov

(S1, S3) ≤ df
cov

(S1, S2) + df
cov

(S2, S3)

Proof: The proof of this proposition follows from the fact that for any two
systems S1 and S2, we have that df

cov
(S1, S2) = df

cor
(S2, S1).

The robustness distance satisfies the triangle inequality, but not the quan-
titative reflexivity. The system S1 in Figure 1 is a witness system that violates
drob(S1, S1) = 0. In fact, for LimAvg objectives and any rational value v ∈ [0, 1],
it is easy to construct a system Sv such that drob(Sv, Sv) = v.

Theorem 3. df
rob conforms to the triangle inequality for f ∈ {LimAvg ,Discλ},

i.e. : ∀S1, S2, S3 ∈ S : df
rob(S1, S3) ≤ df

rob(S1, S2) + df
rob(S2, S3)

Proof: We will consider systems which have fairness conditions and the case
without fairness conditions is subsumed by this.

Given any ǫ > 0, we will proceed to prove this result along the same lines as
the proof of Proposition 1 by constructing a strategy for Player 2 in RS1,S3

from
ǫ
2 -optimal strategies of Player 2 in RS1,S2

and RS2,S3
. Let the ǫ

2 -optimal strate-
gies for Player 2 in RS1,S2

and RS2,S3
be τ2 and τ3 respectively. We construct

a strategy τ∗ for Player 2 in RS1,S3
with the memory M2 × S2 × M3 where M2

and M3 are the finite memories of τ2 and τ3 respectively.
In the following description, we will denote a state of the alternating

game (si, σk, sj , p) by (si, σk, sj). Let (s1, #, s3) be the state of the game and
(m2, s2, m3) be the state of the memory of τ∗. Let us assume for the moment
that the simulation of s1 by s2 and s2 by s3 always holds. The strategy τ∗ works
as described below:

1. Suppose (s1, #, s3) is a state where Player 2 has to choose either the c or ¬c
edge to decide whether Player 1 is allowed to take an error transition in the
next step. If either τ2 chooses the c edge at (s1, #, s2) and memory state m2

or τ3 chooses the c edge at (s2, #, s3) and memory state m3, τ∗ chooses the c
edge. The memory of τ∗ is updated to the corresponding updated memories
of τ2 and τ3 and the S2 state chosen by τ2.

2. Suppose (s1, #, s3) is a state where Player 2 has to simulate the Player 1
move. Let the Player 1 move to (s′1, σ1, s3) according to the transition
(s1, σ1, s

′
1).

(a) If ¬c is chosen in the previous step, there can be no erroneous transi-
tions and every Player 1 move can simulated, as we have assumed that
s1 can be simulated by s2 and s2 can be simulated by s3. Suppose τ2

updates its memory to m′
2 and moves to (s′1, #, s′2) on the symbol σ1

from the game position (s′1, σ1, s2) and memory state m2. Also, suppose
τ3 updates its memory to m′

3 and moves to (s′2, #, s′3) on symbol σ1

from the game position (s′2, σ1, s3) and memory state m3. τ∗ updates
its memory to (m′

2, s
′
2, m

′
3) and choose the successor (s′1, #, s′2) and the

transition symbol σ1. The corresponding transitions for ErrMod∅(S3) is
(s3, σ1, s

′
3).

(b) Now, if c was chosen in the previous step, we have the two possibilities:
either c was chosen as it was the choice of τ2 or τ3. We consider the two
cases separately:
(τ2) If τ2 chose c, it means that every move of ErrMod(S1) from s1

(including the erroneous moves) can be simulated by ErrMod(S2).
Therefore, we update the memory and choose the τ∗ move as in the
previous case.

(τ3) If τ2 choice was ¬c, but τ3 choice was c, we have the following:
i. For every ErrMod(S1) transition from s1 to s′1 on σ, there is a

non-erroneous S1 transition between the same states (by defini-
tion, say on symbol σ′

1). Let τ2 update its memory to m′
2 and

choose the successor (s′1, #, s′2) on transition symbol σ′
1 from the

game position (s′1, σ
′
1, s2) in RS1,S2

.
ii. Now, let τ3 update its memory to m3 and move to (s′2, #, s′3) on

σ1 in the game position (s′2, σ1, s3) and memory state m3.
iii. Now, the τ∗ chooses the successor (s′1, #, s′3) and the transition

symbol σ1 and updates its memory to (m′
2, s

′
2, m

′
3).

As in the proof of Proposition 1, we can decompose any play of RS1,S3
conforming

to τ∗ into two plays of RS1,S2
and RS2,S3

using the memory of τ∗. Also, we have
the case that there is a non-zero weight move in RS1,S3

if and only if there is
corresponding non-zero weight move in either RS1,S2

or RS2,S3
. Hence, by the

same arguments as in the previous proof, we get the required inequality in the
case that the simulation always holds.

Now, we just have to consider the case where the simulation in RS1,S3

breaks. Due to the way τ∗ is defined, the simulation between ErrMod(S1) and
ErrMod(S3) breaks in RS1,S3

, if and only if the simulation breaks in RS1,S2

or RS2,S3
. Hence, we have drob(S1, S3) = 1 due to the failure of simulation if

and only if drob(S2, S3) = 1 or drob(S1, S2) = 1, which will give us the required
inequality.
Compositionality In the qualitative case, compositionality theorems help
analyse large systems by decomposing them into smaller components. For exam-
ple, if T1 simulates S1 and T2 simulates S2, we have that the composition of T1

and T2 simulates the composition of S1 and S2. We show that in the quantitative
case, the distance between the composed systems is bounded by the sum of the
distances between individual systems.

If A and A′ are two transition systems, we define asynchronous and syn-
chronous composition of the two systems, written as A ‖ A′ and A × A′ respec-
tively as follows: (a) The state space is S×S′; (b) ((s, s′), σ, (t, t′)) is a transition
of A ‖ A′ iff (s, σ, t) is a transition of A and s′ = t′ or (s′, σ, t′) is a transition
of A′ and s = t, and (c) ((s, s′), σ, (t, t′)) is a transition of A×A′ iff (s, σ, t) is a
transition of A and (s′, σ, t′) is a transition of A′.

The following theorems show that the simulation distances between whole
systems is no more than the sum of the distances between the individual com-
ponents.

Theorem 4. The correctness, coverage and robustness distances satisfy the fol-
lowing property, when f ∈ {LimAvg,Discλ}:

df (S1 × S2, T1 × T2) ≤ df (S1, T1) + df (S2, T2)

Proof: Let us consider the correctness game first. Let CS1,T1
and CS2,T2

be the
games for computing dcor(S1, T1) and dcor(S2, T2). Let τ1 and τ2 be ǫ

2 -optimal
strategies for Player 2 in the CS1,T1

and CS2,T2
, with memory M1 and M2 re-

spectively. We define a strategy τ∗ for Player 2 in CS1×S2,T1×T2
with memory

M1 × M2. τ∗ works by playing τ1 and τ2 component-wise.
At state (s1, σ, t1) and memory m1, let τ1 update its memory to m′

1 and
move to (s1, #, t′1) with symbol σ and at state (s2, σ, t2) and memory m2, let τ2

update its memory to m′
2 and move to (s2, #, t′2) with the symbol σ. Now, at

the state ((s1, s2), σ, (t1, t2)) and memory (m1, m2), τ∗ updates its memory to
(m′

1, m
′
2) and chooses to move to the successor ((s1, s2), #, (t′1, t

′
2)) on symbol σ.

Now, any play ρ conforming to τ∗ in the game CS1×S2,T1×T2
can be split

component-wise into plays ρ1 conforming to τ1 and ρ2 conforming to τ2 in games
CS1,T1

and CS2,T2
respectively. A move in ρ is a non-zero weight move if and only

if at least one of the two corresponding moves in ρ1 and ρ2 has a non-zero weight.
Using this fact, as in proof of Proposition 1, we can show that the value of the
play ρ is no more than ǫ larger than the sum of the values of the two games
CS1,T1

and CS2,T2
. Hence, we get the result for the correctness distance. Also, the

proof for the coverage distance follows from the fact that dcov(A, B) = dcor(B, A)
for any two systems A and B.

For the robustness distance, we can prove the result by a similar component-
wise strategy construction of τ∗ from ǫ

2 -optimal finite-memory strategies τ1 and
τ2 for RS1,T1

and RS2,T2
. We describe the strategy construction informally as

follows: At any point where Player 2 has to choose a c or ¬c transition, τ∗ advises
Player 2 to pick a c transition if and only if both τ1 and τ2 pick a c transition
in their respective components. At every point where Player 2 is to simulate
the move of Player 1 , τ∗ advises Player 2 to move to a state with the same
components as τ1 and τ2 moves.

As before, we have that any play ρ conforming to τ∗ can be decomposed into
two individual plays ρ1 and ρ2, conforming to τ1 and τ2 respectively. As any
¬c transition in ρ arises from at least one of the corresponding transitions in
the ρ1 and ρ2, we can use the same arguments as above to prove the required
inequality.

Theorem 5. The correctness, coverage and robustness dis-
tances satisfy the following property when f = LimAvg.

df (S1 ‖ S2, T1 ‖ T2) ≤ α.df (S1, T1) + (1 − α).df (S2, T2)
where α is the fraction of times S1 is scheduled in S1 ‖ S2 in the long run,
assuming that the fraction has a limit in the long run.

Proof: As in the proof of Theorem 4, the proof works for all cases by constructing
a Player 2 strategy τ∗ from the ǫ

2 -optimal strategies τ1 and τ2 in the games for
computing d(S1, T1) and d(S2, T2) respectively. Let the memories of τ∗, τ1 and
τ2 be as in the proof of Theorem 4.

For the correctness game, we define τ∗ as follows: If Player 1 moves
from ((s1, s2), #, (t1, t2)) to ((s′1, s2), σ, (t1, t2)) according to the S1 transition
(s1, σ, s2), and τ∗ has the memory (m1, m2), it responds by playing the τ1 strat-
egy in the first component, i.e. if from the game position (s′1, σ, t1) and memory
m1, τ1 moves to (s′1, #, t′1) on symbol σ and updates memory to m′

1, τ∗ chooses
to move to ((s′1, s2), #, (t′1, t2)) with the symbol σ and updates its memory to
(m′

1, m2). The response to a Player 1 move in the second component of the sys-
tem is similar. By similar arguments used in the previous proof, we can prove
that τ∗ is a witness to the required inequality as follows: let ρ be any play confor-
mant to τ∗. Let I1 ⊆ Z be the indices where the move is in the first component
and let I2 = Z \ I1. Now, let ρi be the CSi,Ti

play obtained from ρ by taking on

the positions in Ii and projecting it into component i. By construction, we have
ρi conformant to τi. Hence, we get for the f = LimAvg case:

ν(ρ) = lim inf
n→∞

1

n

n
∑

i=0

v(ρi)

= lim inf
n→∞

1

n

(

i≤n
∑

i∈I1

v(ρi
1) +

i≤n
∑

i∈I2

v(ρi
2)

)

= lim
n→∞

1

n

(

i≤n
∑

i∈I1

v(ρi
1) +

i≤n
∑

i∈I2

v(ρi
2)

)

= lim
n→∞

n1

n
.

(

1

n1
.

i≤n
∑

i∈I1

v(ρi
1)

)

+
n2

n
.

(

1

n2
.

i≤n
∑

i∈I2

v(ρi
2)

)

where ni = |{k | k ∈ Ii ∧ k ≤ n}|

= α.

(

lim
n1→∞

1

n1
.

i≤n
∑

i∈I1

v(ρi
1)

)

+ (1 − α).

(

lim
n2→∞

1

n2
.

i≤n
∑

i∈I2

v(ρi
2)

)

as limn→∞
n1

n
= α and limn→∞

n2

n
= 1 − α

≤ α.(d(S1, T1) +
ǫ

2
) + (1 − α).(d(S2, T2) +

ǫ

2
)

as ρ1 conforms to τ1 and ρ2 conforms to τ2

= α.d(S1, T1) + (1 − α).d(S2, T2) +
ǫ

2

Hence, τ∗ is a witness strategy that shows the required inequality.
For the robustness game, we define τ∗ the following:

1. From the state ((s1, s2), #, (t1, t2), 2) and memory (m1, m2), Player 2 chooses
the c transition if and only if τi chooses the c transition in (si, #, ti) and
memory mi for i ∈ {1, 2}.

2. From the state ((s1, s2), σ, (t1, t2), 2) and memory (m1, m2), if Player 1 has
moved in the first component, τ∗ copies the τ1 move in the first component
and updates the first component of the memory. The same holds for the
second component.

Now, for any play ρ conformant to τ∗ we can define ρ1 and ρ2 as in the correctness
case and use the same arguments to give us the inequality.
Existential and Universal Abstraction. In the boolean case, properties of
systems can be studied by studying the properties of over-approximations and
under-approximations. In an analogous way, we prove that the distances be-
tween two systems is bounded from above and below by distances between ab-
stractions of the two systems. We first define over-approximations and under-
approximations of systems.

Given a transition system S = 〈S, Σ, E, s0〉 existential abstraction and
universal abstraction of the system are systems S∃ = 〈Q, Σ, E∃

Q, [s0]〉 and

S∀ = 〈Q, Σ, E∀
Q, [s0]〉 where Q is the set of equivalence classes of some equiv-

alence relation over S, [s0] is the equivalence class containing s0 and E∃
Q =

{(q, σ, q′) | ∃s, s′ : [s ∈ q ∧ s′ ∈ q′ ∧ (s, σ, s′) ∈ E]} for existential abstraction
and E∀

Q = {(q, σ, q′) | ∀s, s′ : [s ∈ q ∧ s′ ∈ q′ =⇒ (s, σ, s′) ∈ E]} for universal
abstraction.

Theorem 6. Consider a specification S and an implementation I. Let S∃ and
I∃ be existential abstractions, and S∀ and I∀ be universal abstractions of S and I
respectively. The correctness, coverage and robustness distances satisfy the three
following properties when f ∈ {LimAvg ,Discλ}:
(a) df

cor
(I∀, S∃) ≤ df

cor
(I, S) ≤ df

cor
(I∃, S∀)

(b) df
cov

(I∃, S∀) ≤ df
cov

(I, S) ≤ df
cov

(I∀, S∃)

(c) df
rob(I

∀, S∃) ≤ df
rob(I, S) ≤ df

rob(I
∃, S∀)

Proof: The proof of the lower bound is based on the fact that every behavior of
T is present in T ∃ and the behaviors present in T ∀ are a subset of the behaviors
present in T . We prove the lower bounds and proofs for the upper bounds is
similar, but considers optimal Player 1 strategies, instead of optimal Player 2
strategies considered below.

1. Let τ be the ǫ-optimal Player 2 strategy in CI,S with memory M . We
construct the strategy τ∗ with memory M as follows: At a game position
(qI , σ, qS) and memory m ∈ M , let sI and sS be I and S states such that
from sI ∈ qI ∧ sS ∈ qS and from (sI , σ, sS) and memory m in CI,S , Player 2
can ensure that the play value is less that dcor(I, S)+ ǫ by playing according
to τ . Also, let τ update its memory to m′ and move to (sI , #, s′S) on σ. Now,
at (qI , σ, qS) and memory m, τ∗ updates its memory to m′ and chooses to
move to (qI , σ, [s′S]) with the transition symbol σ where [s′S] is the unique
S∃ state containing s′S .
Now, we can easily show that if Player 2 plays according to τ∗, for every
state (qI , σ, qS) that occurs in a play, we can find sI and sS which satisfy
the condition mentioned above. Also, from every play ρ conformant to τ∗,
we can extract a play ρ′ in CS,I conformant to τ such that the value of the
two plays are equal. Hence, we have demonstrated a strategy ensures a value
less than dcor(I, S) + ǫ for every ǫ > 0. This gives us the required result.

2. This inequality follows from the previous one easily:

dcov(I
∃, S∀) = dcor(S

∀, I∃) ≤ dcor(S, I) = dcov(I, S)

3. As before, let τ be an ǫ-optimal Player 2 strategy in RI,S with memory M .
We define τ∗ with memory M as follows:

(a) At a game position (qI , #, qS , 2) and memory m, where Player 2 has to
choose a c or ¬c edge, suppose there exists sS ∈ qS ∧ sI ∈ qI such that
τ chooses the c edge in state (sI , #, sS , 2) and updates its memory to
m′. τ∗ does the same by choosing the c edge and updating its memory
to m′.

(b) At a game position (q′I , σ, qS , 2) and memory m, where Player 2 has
to simulate the transition (qI , σ, q′I), τ∗ works by picking a convenient
corresponding transition (sI , σ, s′I) in RI,S and using the same move τ
and memory update τ uses.
It is fairly obvious that from any play ρ conformant to τ∗, a play ρ′

conformant to τ can be extracted in RI,S with ν(ρ) ≤ ν(ρ′). As in the
case for the correctness distance, this gives us the required result.

5 Robustness of Forward Error Correction Systems

Forward Error Correction systems are a mechanism of error control for data
transmission on noisy channels [20]. A very important characteristic of these
error correction systems is the maximum tolerable bit-error rate, which is the
maximum number of errors the system can tolerate while still being able to
successfully decode the message. We show that this property can be measured
as the drob distance between a system and an ideal system (specification).

We will examine three forward error correction systems: one with no error
correction facilities, the Hamming(7,4) code [15], and triple modular redundancy
(TMR) [18] that by design can tolerate no errors, one error in seven bits, and
one error in three bits respectively. We measure the robustness with respect to
an ideal system which can tolerate an unbounded number of errors. The pseudo-
code for the three systems we are examining is presented in Figure 4. The only
errors we allow are bit flips during transmission.

These systems are modeled as transition systems. As an example, we present
the transmission of the bit block 1100 in the Hamming(7,4) system. The encoded
bit string for this block is 0111100. Now, from the initial state (#7, #7), on the
input 1100, the transmitted bit is 0 (the first bit of the encoded string) and the
state changes to (#111100, 0######) (assuming no errors). From this state,
we go on the symbol (####, 1, ####) to the state (##11100, 01#####)
and so on. An error transition from (#111100, 0######) will lead to the
state (##11100, 00#####). The outline of the set of states and transitions
for this transmission is illustrated in Figure 5.

T1 T2 drob(T1, T2)
None Ideal System 1

Hamming Ideal System 6/7
TMR Ideal System 2/3

Table 2. Robustness of FEC sys-
tems

The values of drobof these systems mea-
sured against the ideal system are sum-
marized in Table 2. The robustness values
clearly mirror the error tolerance values.
In fact, each robustness value is equal to
1 − e where e is the corresponding error
tolerance value.

6 Conclusion

We have motivated the notion of distance between two systems or between a
system and a specification, and introduced quantitative simulation games as a

No error correction
proc sender(B0,B1, B2,B3) ≡

call send(B0,B1,B2,B3); .
proc receiver() ≡

call receive(B0,B1,B2,B3);
return(B0,B1,B2,B3).

Hamming(7,4) error correction

proc sender(B0,B1, B2,B3) ≡

P0 := B0 ⊕ B1 ⊕ B3

P1 := B0 ⊕ B2 ⊕ B3

P2 := B1 ⊕ B2 ⊕ B3

call send(P0,P1, B0,P2,B1,B2,B3); .
proc receiver() ≡

call receive(P0,P1,B0,P2,B1,B2,B3);
P0 := P0 ⊕B0 ⊕ B1 ⊕ B3;
P1 := P1 ⊕B0 ⊕ B2 ⊕ B3;
P2 := P2 ⊕B1 ⊕ B2 ⊕ B3;
B0 := B0 ⊕ (¬P0.P1.¬P2);
B1 := B1 ⊕ (P0.¬P1.P2);
B2 := B2 ⊕ (P0.P1.¬P2);
B3 := B3 ⊕ (P0.P1.P2);
return(B0,B1,B2,B3).

Triple modular redundancy

proc sender(B0,B1,B2,B3) ≡

call send(B0,B0,B0);
call send(B1,B1,B1);
call send(B2,B2,B2);
call send(B3,B3,B3); .

proc receiver() ≡

call receive(B01,B02,B03);
call receive(B11,B12,B13);
call receive(B21,B22,B23);
call receive(B31,B32,B33);
B0 := B01.B02 ∨ B02.B03 ∨ B03.B01;
B1 := B11.B12 ∨ B12.B13 ∨ B13.B11;
B2 := B21.B22 ∨ B22.B23 ∨ B23.B21;
B3 := B31.B32 ∨ B32.B33 ∨ B33.B31;
return(B0,B1,B2, B3).

Fig. 4. Forward Error Correction Algorithms

framework for measuring such distances. We presented three particular distances
— two for quantifying aspects of correct systems, namely coverage and robust-
ness; and one for measuring the degree of correctness of an incorrect system.

There are several possible directions for future work. An interesting question
is how to synthesize a system that minimizes a distance from a given specification
— for example, given a specification, one might be interested in synthesizing the
most robust system. Further possibilities include building a tool for measuring
the robustness distance for programs or protocols implementing various error
recovery or error correction mechanisms.

#######

#######

#111100

0######

##11100

01#####

######0

011110#

######0

011010#

(1100,0,####) (####,1,####)

with some error transitions

(####,0,1100)

(####,0,1100)

Fig. 5. Part of the transition graph for Hamming(7,4) system

References

1. R. Alur, T. Henzinger, O. Kupferman, and M. Vardi. Alternating refinement rela-
tions. In CONCUR, pages 163–178, 1998.

2. R. Bloem, K. Chatterjee, T. Henzinger, and B. Jobstmann. Better quality in
synthesis through quantitative objectives. In CAV, pages 140–156, 2009.

3. P. Caspi and A. Benveniste. Toward an approximation theory for computerised
control. In EMSOFT, pages 294–304, 2002.

4. K. Chatterjee, L. Doyen, and T. Henzinger. Quantitative languages. In CSL, pages
385–400, 2008.

5. K. Chatterjee, L. Doyen, and T. Henzinger. Expressiveness and closure properties
for quantitative languages. In LICS, pages 199–208, 2009.

6. K. Chatterjee, T. A. Henzinger, and M. Jurdzinski. Mean-payoff parity games. In
LICS, pages 178–187, 2005.

7. L. de Alfaro, M. Faella, and M. Stoelinga. Linear and branching system metrics.
IEEE Trans. Software Eng., 35(2):258–273, 2009.

8. L. de Alfaro, T. Henzinger, and R. Majumdar. Discounting the future in systems
theory. In ICALP, pages 1022–1037, 2003.

9. L. de Alfaro, R. Majumdar, V. Raman, and M. Stoelinga. Game refinement rela-
tions and metrics. Logical Methods in Computer Science, 4(3), 2008.

10. J. Desharnais, V. Gupta, R. Jagadeesan, and P. Panangaden. Metrics for labelled
Markov processes. Theor. Comput. Sci., 318(3):323–354, 2004.

11. M. Droste and P. Gastin. Weighted automata and weighted logics. Theor. Comput.
Sci., 380(1-2):69–86, 2007.

12. A. Ehrenfeucht and J. Mycielski. Positional strategies for mean payoff games. In
International Journal of Game Theory, pages 163–178, 1979.

13. N. Fenton. Software Metrics: A Rigorous and Practical Approach, Revised (Paper-
back). Course Technology, 1998.

14. Y. Gurevich and L. Harrington. Trees, automata, and games. In STOC, pages
60–65, 1982.

15. R. W. Hamming. Error detecting and error correcting codes. Bell System Tech.
J., 29:147–160, 1950.

16. T. A. Henzinger, O. Kupferman, and S. K. Rajamani. Fair simulation. In Infor-
mation and Computation, pages 273–287, 1997.

17. R. Lincke, J. Lundberg, and W. Löwe. Comparing software metrics tools. In
ISSTA, pages 131–142, 2008.

18. R. E. Lyons and W. Vanderkulk. The use of triple-modular redundancy to improve
computer reliability. IBM J. Res. Dev., 6(2):200–209, 1962.

19. R. Milner. An algebraic definition of simulation between programs. In IJCAI,
pages 481–489, 1971.

20. C. E. Shannon. A mathematical theory of communication. Bell system technical
journal, 27, 1948.

21. F. van Breugel. An introduction to metric semantics: operational and denotational
models for programming and specification languages. Theor. Comput. Sci., 258(1-
2):1–98, 2001.

22. F. van Breugel and J. Worrell. Approximating and computing behavioural dis-
tances in probabilistic transition systems. Theor. Comput. Sci., 360(1-3):373–385,
2006.

23. U. Zwick and M. Paterson. The complexity of mean payoff games on graphs. Theor.
Comput. Sci., 158(1&2):343–359, 1996.

