
Quantitative Synthesis for
Concurrent Programs?,??

Pavol Černý1, Krishnendu Chatterjee1, Thomas A. Henzinger1, Arjun
Radhakrishna1, and Rohit Singh2

1 IST Austria
2 IIT Bombay

Abstract. We present an algorithmic method for the quantitative,
performance-aware synthesis of concurrent programs. The input consists
of a nondeterministic partial program and of a parametric performance
model. The nondeterminism allows the programmer to omit which (if
any) synchronization construct is used at a particular program location.
The performance model, specified as a weighted automaton, can capture
system architectures by assigning different costs to actions such as lock-
ing, context switching, and memory and cache accesses. The quantitative
synthesis problem is to automatically resolve the nondeterminism of the
partial program so that both correctness is guaranteed and performance
is optimal. As is standard for shared memory concurrency, correctness
is formalized “specification free”, in particular as race freedom or dead-
lock freedom. For worst-case (average-case) performance, we show that
the problem can be reduced to 2-player graph games (with probabilistic
transitions) with quantitative objectives. While we show, using game-
theoretic methods, that the synthesis problem is Nexp-complete, we
present an algorithmic method and an implementation that works ef-
ficiently for concurrent programs and performance models of practical
interest. We have implemented a prototype tool and used it to synthe-
size finite-state concurrent programs that exhibit different programming
patterns, for several performance models representing different architec-
tures.

1 Introduction

A promising approach to the development of correct concurrent programs is
partial program synthesis. The goal of the approach is to allow the programmer to
specify a part of her intent declaratively, by specifying which conditions, such as
linearizability or deadlock freedom, need to be maintained. The synthesizer then
constructs a program that satisfies the specification (see, for example, [17,16,19]).

? This work was partially supported by the ERC Advanced Grant QUAREM, the FWF
NFN Grant S11402-N23 and S11407-N23 (RiSE), the EU NOE Grant ArtistDesign,
and a Microsoft faculty fellowship.

?? The conference version of this paper will appear in the Proceedings of the 23rd
International Conference on Computer Aided Verification (CAV), 2011.

ar
X

iv
:1

10
4.

43
06

v1
 [

cs
.P

L
]

 2
1

A
pr

 2
01

1
brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by IST Austria: PubRep (Institute of Science and Technology)

https://core.ac.uk/display/268226805?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

However, quantitative considerations have been largely missing from previous
frameworks for partial synthesis. In particular, there has been no possibility for
a programmer to ask the synthesizer for a program that is not only correct,
but also efficient with respect to a specific performance model. We show that
providing a quantitative performance model that represents the architecture of
the system on which the program is to be run can considerably improve the
quality and, therefore, potential usability of synthesis.

Motivating examples: Example 1. Consider a producer-consumer program,
where k producer and k consumer threads access a buffer of n cells. The pro-
grammer writes a partial program implementing the procedures that access the
buffer as if writing the sequential version, and specifies that at each control lo-
cation a global lock or a cell-local lock can be taken. It is easy to see that there
are at least two different ways of implementing correct synchronization. The
first is to use a global lock, which locks the whole buffer. The second is to use
cell-local locks, with each thread locking only the cell it currently accesses. The
second program allows more concurrent behavior and is better in many settings.
However, if the cost of locks is high (relative to the other operations), the global-
locking approach is more efficient. In our experiments on a desktop machine, the
global-locking implementation out-performed the cell-locking implementation by
a factor of 3 in certain settings.

Example 2. Consider the program in Figure 1. It
1: while(true) {
2: lver=gver; ldata=gdata;
3: n = choice(1..10);
4: i = 0;
5: while (i < n) {
6: work(ldata); i++;
7: }
8: if (trylock(lock)) {
9 if (gver==lver) {
10: gdata = ldata;
11: gver = lver+1;
12: unlock(lock);
13: } else {unlock(lock)}
14:} }

Fig. 1. Example 2

uses classic conflict resolution mechanism used for
optimistic concurrency. The shared variables are
gdata, on which some operation (given by the func-
tion work()) is performed repeatedly, and gver,
the version number. Each thread has local vari-
ables ldata and lver that store local copies of the
shared variables. The data is read (line 2) and oper-
ated on (line 6) without acquiring any locks. When
the data is written back, the shared data is locked
(line 8), and it is checked (using the version num-
ber, line 9) that no other thread has changed the
data since it has been read. If the global version

number has not changed, the new value is written to the shared memory (line
10), and the global version number is increased (line 11). If the global version
number has changed, the whole procedure is retried. The number of operations
(calls to work) performed optimistically without writing back to shared memory
can influence the performance significantly. For approaches that perform many
operations before writing back, there can be many retries and the performance
can drop. On the other hand, if only a few operations are performed optimisti-
cally, the data has to be written back often, which also can lead to a performance
drop. Thus, the programmer would like to leave the task of finding the optimal
number of operations to be performed optimistically to the synthesizer. This is
done via the choice statement (line 4).

The partial program resolution problem. Our aim is to synthesize concur-
rent programs that are both correct and optimal with respect to a performance
model. The input for partial program synthesis consists of (1) a finite-state par-
tial program, (2) a performance model, (3) a model of the scheduler, and (4)
a correctness condition. A partial program is a finite-state concurrent program
that includes nondeterministic choices which the synthesizer has to resolve. A
program is allowed by a partial program if it can be obtained by resolving the
nondeterministic choices. The second input is a parametric performance model,
given by a weighted automaton. The automaton assigns different costs to ac-
tions such as locking, context switching, and memory and cache access. It is
a flexible model that allows the assignment of costs based on past sequences
of actions. For instance, if a context switch happens soon after the preceding
one, then its cost might be lower due to cache effects. Similarly, we can use
the automaton to specify complex cost models for memory and cache accesses.
The performance model can be fixed for a particular architecture and, hence,
need not be constructed separately for every partial program. The third input
is the scheduler. Our schedulers are state-based, possibly probabilistic, models
which support flexible scheduling schemes (e.g., a thread waiting for a long time
may be scheduled with higher probability). In performance analysis, average-
case analysis is as natural as worst-case analysis. For the average-case analysis,
probabilistic schedulers are needed. The fourth input, the correctness condition,
is a safety condition. We use “specification-free” conditions such as data-race
freedom or deadlock-freedom. The output of synthesis is a program that is (a)
allowed by the partial program, (b) correct with respect to the safety condition,
and (c) has the best performance of all the programs satisfying (a) and (b) with
respect to the performance and scheduling models.

Quantitative games. We show that the partial program resolution problem
can be reduced to solving imperfect information (stochastic) graph games with
quantitative (limit-average or mean-payoff) objectives. Traditionally, imperfect
information graph games have been studied to answer the question of existence
of general, history-dependent optimal strategies, in which case the problem is
undecidable for quantitative objectives [8]. We show that the partial program
resolution problem gives rise to the question (not studied before) whether there
exist memoryless optimal strategies (i.e. strategies that are independent of the
history) in imperfect information games. We establish that the memoryless prob-
lem for imperfect information games (as well as imperfect information stochastic
games) is Np-complete, and prove that the partial program resolution problem
is Nexp-complete for both average-case and worst-case performance based syn-
thesis. We present several techniques that overcome the theoretical difficulty
of Nexp-hardness in cases of programs of practical interest: (1) First, we use
a lightweight static analysis technique for efficiently eliminating parts of the
strategy tree. This reduces the number of strategies to be examined signifi-
cantly. We then examine each strategy separately and, for each strategy, obtain
a (perfect information) Markov decision process (EDP). For MDPs, efficient
strategy improvement algorithms exist, and require solving Markov chains. (2)

Second, Markov chains obtained from concurrent programs typically satisfy cer-
tain progress conditions, which we exploit using a forward propagation technique
together with Gaussian elimination to solve Markov chains efficiently. (3) Our
third technique is to use an abstraction that preserves the value of the quantita-
tive (limit-average) objective. An example of such an abstraction is the classical
data abstraction.

Experimental results. In order to evaluate our synthesis algorithm, we im-
plemented a prototype tool and applied it to four finite-state examples that
illustrate basic patterns in concurrent programming. In each case, the tool au-
tomatically synthesized the optimal correct program for various performance
models that represent different architectures. For the producer-consumer exam-
ple, we synthesized a program where two producer and two consumer threads
access a buffer with four cells. The most important parameters of the perfor-
mance model are the cost l of locking/unlocking and the cost c of copying data
from/to shared memory. If the cost c is higher than l (by a factor 100:1), then
the fine-grained locking approach is better (by 19 percent). If the cost l is equal
to c, then the coarse-grained locking is found to perform better (by 25 percent).
Referring back to the code in Figure 1, for the optimistic concurrency exam-
ple and a particular performance model, the analysis found that increasing n
improves the performance initially, but after a small number of increments the
performance started to decrease. We measured the running time of the program
on a desktop machine and observed the same phenomenon.

Related work. Synthesis from specifications is a classical problem [6,7,15]. More
recently, sketching, a technique where a partial implementation of a program is
given and a correct program is generated automatically, was introduced [17] and
applied to concurrent programs [16]. However, none of the above approaches
consider performance-aware algorithms for sketching; they focus on qualitative
synthesis without any performance measure. We know of two works where quan-
titative synthesis was considered. In [2,3] the authors study the synthesis of
sequential systems from temporal-logic specifications. In [19,5] fixed optimiza-
tion criteria (such as preferring short atomic sections or fine-grained locks) are
considered. Optimizing these measures may not lead to optimal performance on
all architectures. None of the cited approaches use the framework of imperfect
information games, nor parametric performance models.

2 The Quantitative Synthesis Problem

2.1 Partial Programs

In this section we define threads, partial programs, programs and their semantics.
We start with the definitions of guards and operations.

Guards and operations. Let L, G, and I be finite sets of variables (represent-
ing local, global (shared), and input variables, respectively) ranging over fi-
nite domains. A term t is either a variable in L, G, or I, or t1 op t2, where

t1 and t2 are terms and op is an operator. Formulas are defined by the fol-
lowing grammar, where t1 and t2 are terms and rel is a relational operator:
e := t1 rel t2 | e ∧ e | ¬e. Guards are formulae over L, G, and I. Opera-
tions are simultaneous assignments to variables in L∪G, where each variable is
assigned a term over L, G, and I.

Threads. A thread is a tuple 〈Q,L,G, I, δ, ρ0, q0〉, with: (a) a finite set of control
locations Q and an initial location q0; (b) L, G and I are as before; (c) an initial
valuation of the variables ρ0; and (d) a set δ of transition tuples of the form
(q, g, a, q′), where q and q′ are locations from Q, and g and a are guards and
operations over variables in L, G and I.

The set of locations Sk(c) of a thread c = 〈Q,L,G, I, δ, ρ0, q0〉 is the subset
of Q containing exactly the locations where δ is non-deterministic, i.e., locations
where there exists a valuation of variables in L, G and I, for which there are
multiple transitions whose guards evaluate to true.

Partial programs and programs. A partial program M is a set of threads that
have the same set of global variables G and whose initial valuation of variables
in G is the same. Informally, the semantics of a partial program is a parallel
composition of threads. The set G represents the shared memory. A program is a
partial program, in which the set Sk(c) of each thread c is empty. A program P
is allowed by a partial program M if it can be obtained by removing the outgoing
transitions from sketch locations of all the threads of M , so that the transition
function of each thread becomes deterministic.

The guarded operations allow us to model basic concurrency constructs such
as locks (for example, as variables in G and locking/unlocking is done using
guarded operations) and compare-and-set. As partial program defined as a col-
lection of fixed threads, thread creation is not supported.

Semantics. A transition system is a tuple 〈S,A,∆, s0〉 where S is a finite set of
states, A is a finite set of actions, ∆ ⊆ S × A × S is a set of transitions and
s0 is the initial state. The semantics of a partial program M is given in terms
of a transition system (denoted as Tr(M)). Given a partial program M with n
threads, let C = {1, . . . , n} represent the set of threads of M .
– State space. Each state s ∈ S of Tr(M) contains input and local variable

valuations and locations for each thread in C, and a valuation of the global
variables. In addition, it contains a value σ ∈ C∪{∗}, indicating which (if any)
thread is currently scheduled. The initial state contains the initial locations
of all threads and the initial valuations ρ0, and the value ∗ indicating that
no thread is currently scheduled.

– Transition. The transition function ∆ defines interleaving semantics for par-
tial programs. There are two types of transitions: thread transitions, that
model one step of a scheduled thread, and environment transitions, that
model input from the environment and the scheduler. For every c ∈ C, there
exists a thread transition labeled c from a state s to a state s′ if and only if
there exists a transition (q, g, a, q′) of c such that (i) σ = c in s (indicating
that c is scheduled) and σ = ∗ in s′, (ii) the location of c is q in s and
q′ in s′, (iii) the guard g evaluates to true in s, and (iv) the valuation of

local variables of c and global variables in s is obtained from the valuation
of variables in s′ by performing the operation a. There is an environment
transition labeled c from state s to state s′ in Tr(M) if and only if (i) the
value σ in s is ∗ and the value σ in s′ is c and (ii) the valuations of variables
in s and s′ differ only in input variables of the thread c.

2.2 The performance model

We define a flexible and expressive performance model via a weighted automaton
that specifies costs of actions. A performance automaton W is a tuple W =
(QW , Σ, δ, q0, γ), whereQW is a set of states,Σ is a finite alphabet, δ : QW×Σ →
QW is a transition relation, q0 is an initial location and γ is a cost function
γ : QW ×Σ×QW → Q. The labels in Σ represent (concurrency related) actions
that incur costs, while the values of the function γ specify these costs. The
symbols in Σ are matched with the actions performed by the system to which
the performance measures are applied. A special symbol ot ∈ Σ denotes that
none of the tracked actions occurred. The costs that can be specified in this way
include for example the cost of locking, the access to the (shared) main memory
or the cost of context switches.

q0(l, 3) (cs, 2)

(m, 5), (ot, 1)

Fig. 2. Perf. aut.

An example specification that uses the costs mentioned
above is the automaton W in Figure 2. The automaton
describes the costs for locking (l), context switching (cs),
and main memory access (m). Specifying the costs via a
weighted automaton is more general than only specifying
a list of costs. For example, automaton based specification
enables us to model a cache, and the cost of reading from
a cache versus reading from the main memory, as shown
in Figure 8 in Section 5. Note that the performance model can be fixed for
a particular architecture. This eliminates the need to construct a performance
model for the synthesis of each partial program.

2.3 The partial program resolution problem

Weighted probabilistic transition system (WPTS). A probabilistic transition sys-
tem (PTS) is a generalization of a transition system with a probabilistic tran-
sition function. Formally, let D(S) denote the set of probability distributions
over S. A PTS consists of a tuple 〈S,A,∆, s0〉 where S, A, s0 are defined as
for transition systems, and ∆ : S × A → D(S) is probabilistic, i.e., given a
state and an action, it returns a probability distribution over successor states. A
WPTS consists of a PTS and a weight function γ : S ×A× S → Q ∪ {∞} that
assigns costs to transitions. An execution of a weighted probabilistic transition
system is an infinite sequence of the form (s0a0s1a2 . . .) where si ∈ S, ai ∈ A,
and ∆(si, ai)(si+1) > 0, for all i ≥ 0. We now define boolean and quantitative
objectives for WPTS.

Safety objectives. A safety objective SafetyB is defined by a set B of “bad” states
and requires that states in B are never present in an execution. An execution
e = (s0a0s1a2 . . .) is safe (denoted by e ∈ SafetyB) if si 6∈ B, for all i ≥ 0.

Limit-average and limit-average safety objectives. The limit-average objec-
tive assigns a real-valued quantity to every infinite execution e. We have
LimAvgγ(s0a0s1a1s2 . . .) = lim supn→∞

1
n

∑n
i=0 γ((si, a, si+1)) if there are no

infinite cost transitions, and ∞ otherwise. The limit-average safety objective
(defined by γ and B) is a lexicographic combination of a safety and a limit-
average objective: LimAvgBγ (e) = LimAvgγ(e), if e ∈ SafetyB , and∞ otherwise.
Limit-average safety objectives can be reduced to limit-average objectives by
making states in B absorbing (states with only self-loop transitions) and assign-
ing the self-loop transitions the weight ∞.

Value of WPTS. Given a WPTS T with weight function γ, a policy pf :
(S × A)∗ × S → A is a function that given a sequence of states and actions
chooses an action. A policy pf defines a unique probability measure on the ex-
ecutions and let Epf (·) be the associated expectation measure. Given a WPTS
T with weight function γ, and a policy pf , the value Val(T, γ,SafetyB , pf) is
the expected value Epf (LimAvgBγ) of the limit-average safety objective. The
value of the WPTS is the supremum value over all policy functions, i.e.,
Val(T, γ,SafetyB) = suppf Val(T, γ,SafetyB , pf).

Schedulers. A scheduler has a finite set of internal memory states QSch. At each
step, it considers all the active threads and chooses one either (i) nondeterministi-
cally (nondeterministic schedulers) or (ii) according to a probability distribution
(probabilistic schedulers), which depends on the current internal memory state.

Composing a program with a scheduler and a performance model. In order to
evaluate the performance of a program, we need to take into account the sched-
uler and the performance model. Given a program P , a scheduler Sch, and a
performance model W , we construct a WPTS, denoted Tr(P,Sch,W), with a
weight function γ as follows. A state s of Tr(P,Sch,W) is composed of a state of
the transition system of P (Tr(P)), a state of the scheduler Sch and a state of the
performance model W . The transition function matches environment transitions
of Tr(P) with the scheduler transitions (which allows the scheduler to schedule
threads) and it matches thread transitions with the performance model tran-
sitions. The weight function γ assigns costs to edges as given by the weighted
automaton W . Furthermore, as the limit average objective is defined only for in-
finite executions, for terminating safe executions of the program we add an edge
back to the initial state. The value of the limit average objective function of the
infinite execution is the same as the average over the original finite execution.
Note that the performance model can specify a locking cost, while the program
model does not specifically mention locking. We thus need to specifically desig-
nate which shared memory variables are used for locking.

Correctness. We restrict our attention to safety conditions for correctness. We
illustrate how various correctness conditions for concurrent programs can be
modelled as Safety objectives: (a) Data-race freedom. Data-races occur when two
or more threads access the same shared memory location and one of the accesses

is a write access. We can check for absence of data-races by denoting as unsafe
states those in which there exist two enabled transitions (with at least one being a
write) accessing a particular shared variable, from different threads. (b) Deadlock
freedom. One of the major problems of synchronizing programs using blocking
primitives such as locks is that deadlocks may arise. A deadlock occurs when two
(or more) threads are waiting for each other to finish an operation. Deadlock-
freedom is a safety property. The unsafe states are those where there exists two
or more threads with each one waiting for a resource held by the next one.

Value of a program and of a partial program. For P , Sch,W as before and SafetyB
is a safety objective, we define the value of the program using the composition of
P , Sch and W as: ValProg(P,Sch,W,SafetyB) = Val(Tr(P,Sch,W), γ, SafetyB).
For be a partial program M , let P be the set of all allowed programs. The value
of M , ValParProg(M,Sch,W,SafetyB) = minP∈P ValProg(P,Sch,W,SafetyB).

Partial Program resolution problem. The central technical questions we address
are as follows: (1) The partial program resolution optimization problem consists
of a partial program M , a scheduler Sch, a performance model W and a safety
condition SafetyB , and asks for a program P allowed by the partial program
M such that the value ValProg(P,Sch,W,SafetyB) is minimized. Informally, we
have: (i) if the value ValParProg(M,Sch,W,SafetyB) is∞, then no safe program
exists; (ii) if it is finite, then the answer is the optimal safe program, i.e., a
correct program that is optimal with respect to the performance model. The
partial program resolution decision problem consists of the above inputs and a
rational threshold λ, and asks whether ValParProg(M,Sch,W,SafetyB) ≤ λ.

3 Quantitative Games on Graphs

Games for synthesis of controllers and sequential systems from specifications
have been well studied in literature. We show how the partial program resolution
problems can be reduced to quantitative imperfect information games on graphs.
We also show that the arising technical questions on game graphs is different
from the classical problems on quantitative graph games.

3.1 Imperfect information games for partial program resolution

An imperfect information stochastic game graph is a tuple G =
〈S,A,En, ∆, (S1, S2), O, η, s0〉, where S is a finite set of states, A is a finite set of
actions, En : S → 2A \ ∅ is a function that maps every state s to the non-empty
set of actions enabled at s, and s0 is an initial state. The transition function
∆ : S × A → D(S) is a probabilistic function which maps a state s and an en-
abled action a to the probability distribution ∆(s, a) over the successor states.
The sets (S1, S2) define a partition of S into Player-1 and Player-2 states, re-
spectively; and the function η : S → O maps every state to an observation from
the finite observation set O. We refer to these as ImpIn 2 1

2 -player game graphs:
ImpIn for imperfect information, 2 for the two players and 1

2 for the probabilistic
transitions.

Special cases. We also consider ImpIn 2-player games (no randomness), perfect
information games (no partial information), MDPs (only one enabled action for
Player 1 states) and Markov chains (only one enabled action for all states) as
special cases of ImpIn 2 1

2 -player games. For full definitions, see [4].
The informal semantics for an imperfect information game is as follows: the

game starts with a token being placed on the initial state. In each step, Player 2
can observe the exact state s in which the token is placed whereas, Player 1
can observe only η(s). If the token is in S1 (resp. S2), Player 1 (resp. Player 2)
chooses an action a enabled in s. The token is then moved to a successor of s
based on the distribution ∆(s, a).

A strategy for Player 1 (Player 2) is a “recipe” that chooses an action for
her based on the history of observations (states). Memoryless Player 1 (Player 2)
strategies are those which choose an action based only on the current observation
(state). We denote the set of Player 1 and Player 2 strategies by Σ and Γ ,
respectively, and the set of Player 1 and Player 2 memoryless strategies by ΣM

and ΓM , respectively.

Probability space and objectives Given a pair of Player 1 and Player 2 strategies
(σ, τ), it is possible to define a unique probability measure Prσ,τ (·) over the set
of paths of the game graph. For details, refer to any standard work on 2 1

2 -player
stochastic games (for example, [18]).

In a graph game, the goal of Player 1, i.e., the objective is given as a boolean
or quantitative function from paths in the game graph to either {0, 1}, or R.
We consider only the LimAvg-Safety objectives defined in Section 2. Player 1
tries to maximize the expected value of the objective. The value of a Player 1
strategy σ is defined as ValGame(f,G, σ) = supτ∈Γ Eσ,τ [f] and the value of the
game is defined as ValGame(f,G) = infσ∈Σ ValGame(f,G, σ).

For a more detailed exposition on ImpIn 2 1
2 -player graph games and the

formal definition of strategies, objectives, and values, see [4].

Decision problems. Given a game graph G, an objective f and a rational thresh-
old q ∈ Q, the general decision problem (resp. memoryless decision prob-
lem) asks if there is a Player 1 strategy (resp. memoryless strategy) σ with
ValGame(f,G, σ) ≤ q. Similarly, the value problem (memoryless value problem)
is to compute infσ∈Σ ValGame(f,G, σ) (minσ∈ΣM ValGame(f,G, σ) resp.). Tra-
ditional game theory study always considers the general decision problem which
is undecidable for limit-average objectives [8] in imperfect information games.

Theorem 1. [8] The decision problems for LimAvg and LimAvg-Safety objec-
tives are undecidable for ImpIn 2 1

2 - and ImpIn 2-player game graphs.

However, we show here that the partial program resolution problems reduce
to the memoryless decision problem for imperfect information games.

Theorem 2. Given a partial program M , a scheduler Sch, a performance model
W , and a correctness condition φ, we construct an exponential-size ImpIn 2 1

2 -
player game graph GpM with a LimAvg-Safety objective such that the memoryless
value of GpM is equal to ValParProg(M, Sch,W,Safety).

Proof. The proof relies on the construction of an imperfect information game
graph, denoted G(M, Sch,W), in which fixing a memoryless strategy σ for
Player 1 yields a WPTS Tr(Pσ,Sch,W) with weight function γ that corresponds
to the product of a program Pσ allowed by the partial program M , composed
with the scheduler Sch and the performance model W . The construction of this
game graph is similar to the construction of the product of a program, scheduler
and performance model, but with a partial program replacing the program. Due
to the nondeterministic transition function of the partial program, there will
exist extra nondeterministic choices in the WPTS (in addition to the choice of
inputs). This nondeterminism is resolved by Player 1 choices and the nondeter-
minism due to input (and possibly scheduling) is resolved by Player 2 choices.
We refer to this game as the program resolution game.

The crucial point of the construction is the observations, i.e., the information
about the state that is visible to Player 1. Since Player 1 is to resolve the nonde-
terminism from the partial program, he is allowed only to observe the scheduled
thread and its current location. He may choose a set of transitions, from that
location, such that only one of the set is enabled for any valuation of the vari-
ables. The formal description of the reduction of partial program resolution to
imperfect information games is as follows.

– State space. Analogous to the construction of Tr(P,Sch,W), a state in the
state space of G(M, Sch,W) is a tuple (s, qSch, qW) where s, qSch and qW are
states of Tr(M), Sch and W , respectively.

– Player-1 and Player-2 partition. The state is a Player 1 state if s is labelled
with a scheduled thread, and a Player 2 state if s has no thread scheduled
and is labelled with a ∗.

– Observation and observation mapping. The set of observations O is the set
of locations from all the threads of M along with a ⊥ element, i.e., O =
{⊥}∪{(t, q)|t is a thread of M and q is a partial program location of t}. All
Player 2 states are mapped to ⊥ by η. Player 1 states with thread t scheduled
and thread t in location q are mapped to (t, q) by η.

– Enabled actions and transitions. Suppose (s, qSch, qW) is a Player 1 state
with η((s, qSch, qW)) = (t, q). Any action a enabled in this state is a set of
transitions of thread t from state q such that only one of them is enabled
for any valuation of local, global and input variables. On choosing action a
in (s, qSch, qW), the control moves to the state (s′, q′Sch, q

′
W) where s′ is the

state obtained by executing the unique enabled transition from a in s. The
states q′Sch and q′W are as in Tr(P,Sch,W). The set of Player 2 actions and
transitions are as in Tr(P,Sch,W).

– Initial state. The initial state of G(M,Sch,W) is the tuple of initial states of
M , Sch and W .

To complete the proof, we show that given a memoryless Player 1 strategy σ,
there exists a program Pσ allowed by M such that Tr(Pσ,Sch,W) corresponds
to the MDP obtained by fixing σ in G(M, Sch,W) and vice-versa.

Given a program Pσ allowed by the partial program, we construct a memo-
ryless σ as follows: σ((t, q)) is the action consisting of the set of transitions from

location q in thread t in Pσ. As Pσ is deterministic, only one of them will be
enabled for a valuation of the variables. Similarly, given a memoryless Player 1
strategy, we construct Pσ by preserving only those transitions from location q of
thread t which are present in σ((t, q)). From the above construction we conclude
the desired correspondence. ut

3.2 Complexity of ImpIn Games and partial-program resolution

We establish complexity bounds for the relevant memoryless decision problems
and use them to establish upper bounds for the partial program resolution prob-
lem. We also show a matching lower bound. First, we state a theorem on com-
plexity of MDPs.

Theorem 3. [9] The memoryless decision problem for LimAvg-Safety objec-
tives can be solved in polynomial time for MDPs.

Theorem 4. The memoryless decision problems for Safety, LimAvg, and
LimAvg-Safety objectives are Np-complete for ImpIn 2 1

2 - and ImpIn 2-player
game graphs.

For the lower bound we show a reduction from 3SAT problem and for the up-
per bound we use memoryless strategies as polynomial witness and Theorem 3
for polynomial time verification procedure. We prove below in two lemmas to
establish Theorem 4.

Lemma 1. The memoryless decision problem for ImpIn 2-player game graphs
with Safety and LimAvg objectives are NP-hard.

Proof. We first show NP-hardness for safety objectives.

(NP-hardness). We will show that the memoryless decision problem for ImpIn
2-player safety game is NP-hard by reducing the 3-SAT problem. Given a 3-SAT
formula Φ over variables x1, x2, . . .xN , with clauses C1, C2, . . .CK , we construct
an imperfect information game graph with N +1 observations and 3K+2 states
such that Player 1 has a memoryless winning strategy from the initial state if
and only if Φ is satisfiable. The construction is described below:

– The states of the game graph are {init} ∪ {si,j | i ∈ [1,K] ∧ j ∈ {1, 2, 3}} ∪
{bad}.

– The observations and the observation mapping are as follows: init and bad
are mapped with observation 0, and si,j is mapped with observation k if the
jth variable of the Ci clause is xk or ¬xk.

– init and bad are Player 2 states and all other states are Player 1 states.
– The actions and transition function of the game graph are as follows:

1. For all i ∈ [0,K], there is a transition from init to si,1 on the action ⊥.
2. If the jth literal of clause Ci is xk, then there are two actions enabled

(true and false) and there is a transition from si,j to init on true and to
si+1,j on false (for j ∈ {1, 2}). For j = 3, the transition on true leads to
init and the transition on false leads to bad .

init

x1 ¬x3

¬x2 ¬x4

x3 x1

bad

true

false

true

false

false

true

⊥ ⊥

false

true

false

true

true

false

C1

C2

Fig. 3. 3-SAT to memoryless imperfect information Safety games

3. If the jth literal of clause Ci is ¬xk, there is a transition from si,j to init
on false and to si+1,j on true (for j ∈ {1, 2}). For j = 3, the transition
on false leads to init and the edge on true leads to bad .

– The objective for Player 1 is to avoid reaching bad and the objective for
Player 2 is to reach bad .

Intuitively, Player 2 chooses a clause Ci in the initial state init . Player 1 then
plays according to her memoryless strategy from each of the states si,j . If the
action a ∈ {true, false} chosen in si,j makes the literal at position j in clause Ci
true, control goes back to init . Otherwise, the control goes to the next si,j+1.
If the choices at all three si,j ’s make the corresponding literal false, the control
goes to bad . The game graph structure is illustrated in Figure 3.

Given a truth value assignment of xi’s such that Φ is satisfied, we can con-
struct a memoryless strategy of Player 1 which chooses the action at observation
i same as the valuation of xi, and the memoryless strategy is winning for Player 1.
In every triple of si,j ’s at least one of the edges dictated by this strategy lead
to init . If that were not the case, the corresponding clause would not have been
satisfied. Given a winning memoryless strategy τ1, the valuation of xi’s which
assigns the τ1(i) to xi satisfies each clause Ck in Φ. This follows from a similar
argument as above. Hence the hardness result follows.

The above reduction is slightly modified to show that the LimAvg memoryless
decision problem is also NP-hard. This can be done by adding a self loop on

state bad with weight 1 and attaching the weight 0 to all other edges. Now,
Player 1 can obtain a value less than 1 if and only if she has a memoryless
winning strategy in the Safety game. The desired result follows. ut

Lemma 2. The memoryless decision problem for LimAvg-Safety objectives for
ImpIn 2 1

2 -player game graphs is in NP.

Proof. Given a memoryless winning strategy for a Player 1 in a ImpIn 2 1
2 -player

game graph, the verification problem is equivalent to solving for the same ob-
jective on the MDP obtained by fixing the strategy for Player 1. Hence the
memoryless strategy is the polynomial witness, and Theorem 3 provides the
polynomial time verification procedure to prove the desired result. ut

Lemma 1 and Lemma 2 gives us Theorem 4.

Remark 1. The Np-completeness of the memoryless decision problems rules out
the existence of the classical strategy improvement algorithms as their exis-
tence implies existence of randomized sub-exponential time algorithms (using
the techniques of [1]), and hence a strategy improvement algorithm would imply
a randomized sub-exponential algorithm for an Np-complete problem.

Theorem 5. The partial-program resolution decision problem is Nexp-complete
for both nondeterministic and probabilistic schedulers.

Proof. (a) The Nexp upper bound follows by an exponential reduction to the
ImpIn games’ memoryless decision problem (Theorem 2), and by Theorem 4.

GLOBALS: var i;

THREAD 1:
while (true)

i = (i + 1) mod N;

THREAD 2:
choice: {

val[v1] = true;
val[v1] = false;

}
...

while (true)
l1 = compute_Q(i,1);
l2 = compute_Q(i,2);
l3 = compute_Q(i,3);
if(not (val[l1] ∨

val[l2] ∨
val[l3]))

assert(false);

Fig. 4. The reduction of
succinct 3-SAT to partial
program resolution

(b) We reduce the Nexp-hard problem succinct
3-SAT (see [14]) to the partial program resolution
problem to show Nexp-hardness. The idea is to con-
struct a two thread partial program (shown in Fig-
ure 4) where Thread 1 chooses a clause from the for-
mula and Thread 2 will determine the literals in the
clause and then, enters an error state if the clause is
not satisfied.

Given an instance of succinct 3-SAT over vari-
ables v1, . . . vM , i.e., a circuit Q which takes pairs
(i, j) and returns the jth literal in the ith clause.
Thread 1 just changes the global variable i, looping
through all clause indices.

Thread 2 will first non-deterministically choose a
valuation V for all literals. It then does the following
repeatedly: (a) Read global i, (b) Compute the ith

clause by solving the circuit value problem for Q with
(i, 1), (i, 2) and (i, 3) as inputs. This can be done in
polynomial time. (c) If the ith clause is not satisfied

with the valuation V, it goes to an error state.
To show the validity of the reduction: (i) Given a satisfying valuation for Q,

choosing that valuation in the first steps of Thread 2 will obviously generate a

safe program. (ii) Otherwise, for every valuation V chosen in the partial program,
there exists a clause (say k) which is not satisfied. We let Thread 1 run till i
becomes equal to k and then let Thread 2 run. The program will obviously
enter the error state. Note that the result is independent of schedulers (non-
deterministic or probabilistic), and performance models (as it uses only safety
objectives). ut

4 Practical Solutions for Partial-Program Resolution

Algorithm 1 Strategy Elimination

Input: M : partial program;
W : performance model;
Sch: scheduler;
Safety: safety condition

Output: Candidates: Strategies
StrategySet ← CompleteTree(M)
{A complete strategy tree}
Candidates ← ∅
while StrategySet 6= ∅ do

Choose Tree from StrategySet
σ ←Root(Tree)
if PartialCheck(σ,Safety) then

StrategySet =
StrategySet ∪ children(Tree)

if Tree is singleton then
Candidates = Candidates ∪{σ}

return Candidates

We present practical solutions for the
computationally hard (Nexp-complete)
partial-program resolution problem.

Strategy elimination. We present the
general strategy enumeration scheme for
partial program resolution. We first intro-
duce the notions of a partial strategy and
strategy tree.
Partial strategy and strategy trees. A par-
tial memoryless strategy for Player 1 is a
partial function from observations to ac-
tions. A strategy tree is a finite branch-
ing tree labelled with partial memoryless
strategies of Player 1 such that: (a) Ev-
ery leaf node is labelled with a complete
strategy; (b) Every node is labelled with
a unique partial strategy; and (c) For any
parent-child node pair, the label of the

child (σ2) is a proper extension of the label of parent (σ1), i.e., σ1(o) = σ2(o)
when both are defined and the domain of σ2 a proper superset of σ1. A com-
plete strategy tree is one where all Player 1 memoryless strategies are present
as labels.

In the strategy enumeration scheme, we maintain a set of candidate strategy
trees and check each one for partial correctness. If the root label of the tree fails
the partial correctness check, then remove the whole tree from the set. Otherwise,
we replace it with the children of the root node. The initial set is a single complete
strategy tree. In practice, the choice of this tree can be instrumental in the
efficiency of partial correctness checks. Trees which first fix the choices that help
the partial correctness check to identify an incorrect partial strategy are more
useful. The partial program resolution scheme is shown in Algorithm 1.

The PartialCheck function checks for the partial correctness of partial
strategies, and returns “Incorrect” if it is able to prove that all strategies com-
patible with the input are unsafe, or it returns “Don’t know”. In practice, for
the partial correctness checks the following steps can be used: (a) checking of
lock discipline to prevent deadlocks; and (b) simulation of the partial program
on small inputs;

Algorithm 2 Synthesis Scheme

Input: M : partial program;
W : performance model;
Sch: a scheduler;
Safety: a safety condition

Output: P : correct program or ⊥
Candidates ← StrategyElimination(M,Sch,W,Safety)
StrategyValues ← ∅
while Candidates 6= ∅ do

Pick σ from Candidates
Gσ ← G(M,Sch,W) with σ fixed
G∗σ ← Abstract(Gσ)
Valid ← SoftwareModelCheck(G∗σ, Safety)
if Valid then

Value ← SolveMDP(G∗σ)
StrategyValues ← StrategyValues ∪ {σ 7→ Value}

if StrategyValues = ∅ then
return ⊥

else
OptimalStrategy = minimum(StrategyValues)
return M with OptimalStrategy strategy fixed

The result of the scheme is a set of candidate strategies for which we eval-
uate full correctness and compute the value. The algorithm is shown in Algo-
rithm 2. In the algorithm, the procedures SoftwareModelCheck, Abstract and
SolveMDP are of special interest. The procedure Abstract abstracts an MDP pre-
serving the LimAvg-Safety properties as described in the following paragraphs.
The SolveMDP procedure uses the optimizations described below to compute
the LimAvg value of an MDP efficiently. The Safety conditions are checked by
SoftwareModelCheck procedure. It might not explicitly construct the states of
the MDP, but may use symbolic techniques to check the Safety property on the
MDP. It is likely that further abstraction of the MDP may be possible during this
procedure as we need abstractions which preserve Safety, and G∗σ is abstracted
to preserve both Safety and LimAvg values.

Evaluation of a memoryless strategy. Fixing a memoryless Player 1 strategy
in a ImpIn 2 1

2 -player game for partial program resolution gives us (i) a non-
deterministic transition system in the case of a non-deterministic scheduler, or
(ii) an MDP in case of probabilistic schedulers. These are perfect-information
games and hence, can be solved efficiently. In case (i), we use a standard min-
mean cycle algorithm (for example, [12]) to find the value of the strategy . In case
(ii), we focus on solving Markov chains with limit-average objectives efficiently.
Markov chains arise from MDPs due to two reasons: (1) In many cases, program
input can be abstracted away using data abstraction and the problem is reduced
to solving a LimAvg Markov Chain. (2) The most efficient algorithm for LimAvg
MDPs is the strategy improvement algorithm [9], and each step of the algorithm
involves solving a Markov chain (for standard techniques, see [9]).

In practice, a large fraction of concurrent programs are designed to en-
sure progress condition called lock-freedom [10]. Lock-freedom ensures that some
thread always makes progress in a finite number of steps. This leads to Markov
chains with a directed-acyclic tree like structure with only few cycles intro-
duced to eliminate finite executions as mentioned in Section 2. We present a for-
ward propagation technique to compute stationary probabilities for these Markov
chains. Computing the stationary distribution for a Markov chain involves solv-
ing a set of linear equalities using Gaussian elimination. For Markov chains that
satisfy the special structure, we speed up the process by eliminating variables
in the tree by forward propagating the root variable. Using this technique, we
were able to handle the special Markov chains of up to 100,000 states in a few
seconds in the experiments.

Quantitative probabilistic abstraction. To improve the performance of the
synthesis, we use standard abstraction techniques. However, for the partial pro-
gram resolution problem we require abstraction that also preserves quantitative
objectives such as LimAvg and LimAvg-Safety. We show that an extension of
probabilistic bisimilarity [13] with a condition for weight function preserves the
quantitative objectives.

Quantitative probabilistic bisimilarity. A binary equivalence relation ≡ on the
states of a MDP is a quantitative probabilistic bisimilarity relation if (a) s ≡ s′

iff s and s′ are both safe or both unsafe; (b) ∀s ≡ s′, a ∈ A :
∑
t∈C ∆(s, a)(t) =∑

t∈C ∆(s′, a)(t) where C is an equivalence class of ≡; and (c) s ≡ s′∧t ≡ t′ =⇒
γ(s, a, s′) = γ(t, a, t′). The states s and s′ are quantitative probabilistic bisimilar
if s ≡ s′.

A quotient of an MDP G under quantitative probabilistic bisimilarity relation
≡ is an MDP (G/≡) where the states are the equivalence classes of ≡ and:
(i) γ(C, a,C ′) = γ(s, a, s′) where s ∈ C and s′ ∈ C ′, and (ii) ∆(C, a)(C ′) =∑
t′∈C′ ∆′(s, a)(t) where s ∈ C. The following theorem states that quotients

preserve the LimAvg-Safety values of an MDP.

Theorem 6. Given an MDP G, a quantitative probabilistic bisimilarity relation
≡, and a limit-average safety objective f , the values in G and G/≡ coincide.

Proof. For every Player 2 strategy τ in G, we define a Player 2 strategy
(τ/≡) in G/≡ (or vice-versa) where: τ((s1, a1)(s2, a2) . . . (sn, an) · sn+1) =
(τ/≡)((C1, a1)(C2, a2) . . . (Cn, an) ·Cn+1) where Ci is the equivalence class con-
taining si. By the properties of ≡, it is simple to check that both τ and τ/≡
have equal values. ut

Consider a standard abstraction technique, data abstraction, which erases
the value of given variables. We show that under certain syntactic restrictions
(namely, that the abstracted variables do not appear in any guard statements),
the equivalence relation given by the abstraction is a quantitative probabilistic
bisimilarity relation and thus is a sound abstraction with respect to any limit-
average safety objective. We also consider a less coarse abstraction, equality and
order abstraction, which preserves equality and order relations among given vari-
ables. This abstraction defines a quantitative probabilistic bisimilarity relation

under the syntactic condition that the guards test only for these relations, and
no arithmetic is used on the abstracted variables.

5 Experiments

We describe the results obtained by applying our prototype implementation of
techniques described above on four examples. In the examples, obtaining a cor-
rect program is not difficult and we focus on the synthesis of optimal programs.

The partial programs were manually abstracted (using the data and order
abstractions) and translated into PROMELA, the input language of the SPIN
model checker [11]. The abstraction step was straightforward and could be au-
tomated. The transition graphs were generated using SPIN. Then, our tool con-
structed the game graph by taking the product with the scheduler and perfor-
mance model. The resulting game was solved for the LimAvg-Safety objectives
using techniques from Section 4. The examples we considered were small (each
thread running a procedure with 15 to 20 lines of code). The synthesis time was
under a minute for all but one case (Example 2 with larger values of n), where it
was under five minutes. The experiments were run on a dual-core 2.5Ghz machine
with 2GB of RAM. For all examples, the tool reports normalized performance
metrics where higher values indicate better performance.

LC: CC Granularity Performance

1:100
Coarse 1

Medium 1.15
Fine 1.19

1:20
Coarse 1

Medium 1.14
Fine 1.15

1:10
Coarse 1

Medium 1.12
Fine 1.12

1:2
Coarse 1

Medium 1.03
Fine 0.92

1:1
Coarse 1

Medium 0.96
Fine 0.80

Table 1. Performance of shared
buffers under various locking
strategies: LC and CC are the
locking cost and data copying cost

Example 1. We consider the producer-
consumer example described in Section 1,
with two consumer and two producer threads.
The partial program models a four slot con-
current buffer which is operated on by produc-
ers and consumers. Here, we try to synthesize
lock granularity. The synthesis results are pre-
sented in Table 1.

The most important parameters in the
performance model are the cost of lock-
ing/unlocking l and the cost c of copying data
from/to shared memory. If c was higher than
l (by 100:1), then the fine-grained locking ap-
proach is better (by 19 percent), and is the
result of synthesis. If the cost l is equal to c,
then the coarse-grained locking approach was
found to perform better (by 25 percent), and
thus the coarse-grained program is the result
of the synthesis.

Example 2. We consider the optimistic
concurrency example described in detail in Section 1. In the code
(Figure 1), the number of operations performed optimistically is con-
trolled by the variable n. We synthesized the optimal n for vari-
ous performance models and the results are summarized in Table 2.

Fig. 5. Work sharing for initialization costs and thread counts: Increasing amount of
work is shared for the cases (a), (b), (c) and (d)

We were able to find correspondence between our models and the program behav-
ior on a desktop machine: (a) We observed that the graph of performance-vs-n
has a local maximum when we tested the partial program on the desktop. In
our experiments, we were able to find parameters for the performance model
which have similar performance-vs-n curves. (b) Furthermore, by changing the
cost of locking operations on a desktop, by introducing small delays during locks,
we were able to observe performance results similar to those produced by other
performance model parameters.

WC : LC LWO
Performance for n

1 2 3 4 5

20:1 1 1.0 1.049 1.052 1.048 1.043
20:1 2 1.0 0.999 0.990 0.982 0.976
10:1 1 1.0 1.134 1.172 1.187 1.193
10:1 2 1.0 1.046 1.054 1.054 1.052

Table 2. Optimistic performance: WC, CC,
and LWO are the work cost, lock cost, and
the length of the work operation

Example 3. We synthesize the op-
timal number of threads for work
sharing (pseudocode in Figure 6).
For independent operations, multi-
ple threads utilize multiple proces-
sors more efficiently. However, for
small number of operations, thread
initialization cost will possibly over-
come any performance gain.

The experimental results are
summarized in Figure 5. The x- and y- axes measure the initialization cost
and performance, respectively. Each plot in the graph is for a different number
of threads. The four graphs (a), (b), (c), and (d) are for a different amounts of

work to be shared (the length of the array to be operated was varied between 8,
16, 32, and 64).

As it can be seen from the figure,
main:

n = choice(1..10);

i = 0;

array[0..N];

while (i < n) {
spawn(worker, i * (N/n), (N/n));

i++;

}

worker(start, length):

i = start;

while(i < start + length) {
work(array[i]);

}

Fig. 6. Pseudo-code for Example 3

for smaller amounts of work, spawn-
ing fewer threads is usually better.
However, for larger amounts of work,
greater number of threads outper-
forms smaller number of threads,
even in the presence of higher initial-
ization costs. The code was run on a
desktop (with scaled parameters) and
similar results were observed.

Example 4. We study the effects of
processor caches on performance us-
ing a simple performance model for
caches. A cache line is modeled as
in Figure 6. It assigns differing costs
to read and write actions if the line
is cached or not. The performance

model is the synchronous product of one such automata per memory line. The
only actions in the performance model after the synchronous product (caches
synchronize on evict and flush) are READ and WRITE actions. These actions are
matched with the transitions of the partial program.

The partial program is a pessimistic variant of 1: while(true) {
2: n = choice(1..10);

3: lock();

4: while (i < n) {
5: data = write(work(

read(data)));

6: }
7: unlock(lock);

8:}

Fig. 7. Pseudo-code for Ex-
ample 4

Figure 1 (pseudocode shown in Figure 7). Increas-
ing n, i.e., the number of operations performed un-
der locks, increases the temporal locality of mem-
ory accesses and hence, increase in performance is
expected. We observed the expected results in our
experiments. For instance, increasing n from 1 to 5
increases the performance by a factor of 2.32 and
increasing n from to 10 gives an additional boost
of about 20%. The result of the synthesis is the
program with n = 10.

6 Conclusion

Summary. Our main contributions are: (1) we developed a technique for syn-
thesizing concurrent programs that are both correct and optimal; (2) we in-
troduced a parametric performance model providing a flexible framework for
specifying performance characteristics of architectures; (3) we showed how to
apply imperfect-information games to the synthesis of concurrent programs and
established the complexity for the game problems that arise in this context (4)
we developed and implemented practical techniques to efficiently solve partial-

program synthesis, and we applied the resulting prototype tool to several exam-
ples that illustrate common patterns in concurrent programming.

in cache ∧ dirty

in cache ∧ !dirty

!in cache ∧ !dirty

?WRITE /

!EVICT (0)

?FLUSH /

!EVICT (MEM WRITE)

?EVICT /

⊥ (0)

?READ /

!FLUSH

(MEM READ)

?FLUSH / ⊥ (0)

?READ / ⊥ (CACHE READ)

?WRITE / ⊥ (CACHE READ)

?READ / ⊥ (CACHE READ)

Fig. 8. Perf. aut. for Example 4

Future work. Our approach examines
every correct strategy. There is thus the
question whether there exists a practi-
cal algorithm that overcomes this limita-
tion. Also, we did not consider the ques-
tion which solution(s) to present to the
programmer in case there is a number
of correct strategies with the same per-
formance. Furthermore, one could per-
haps incorporate some information on the
expected workload to the performance
model. There are several other future re-
search directions: one is to consider the
synthesis of programs that access concur-
rent data structures; another is to create
benchmarks from which performance au-
tomata can be obtained automatically.

References

1. H. Björklund, S. Sandberg, and S. Vorobyov. A discrete subexponential algorithm
for parity games. In STACS, pages 663–674, 2003.

2. R. Bloem, K. Chatterjee, T.A. Henzinger, and B. Jobstmann. Better quality in
synthesis through quantitative objectives. In CAV, pages 140–156, 2009.

3. K. Chatterjee, T. A. Henzinger, B. Jobstmann, and R. Singh. Measuring and
synthesizing systems in probabilistic environments. In CAV, pages 380–395, 2010.

4. Krishnendu Chatterjee, Laurent Doyen, Hugo Gimbert, and Thomas A. Henzinger.
Randomness for free. In MFCS, pages 246–257, 2010.

5. S. Cherem, T. Chilimbi, and S. Gulwani. Inferring locks for atomic sections. In
PLDI, pages 304–315, 2008.

6. A. Church. Logic, arithmetic, and automata. In Proceedings of the International
Congress of Mathematicians, 1962.

7. E. Clarke and E. Emerson. Design and synthesis of synchronization skeletons using
branching time temporal logic. In Proc. Workshop on Logic of Programs, pages
52–71, 1981.

8. A. Degorre, L. Doyen, R. Gentilini, J.-F. Raskin, and S. Toruńczyk. Energy and
mean-payoff games with imperfect information. In CSL, pages 260–274, 2010.

9. J. Filar and K. Vrieze. Competitive Markov decision processes. 1996.
10. M. Herlihy and N. Shavit. The Art of Multiprocessor Programming. Elsevier Inc.,

2008.
11. G. Holzmann. The SPIN Model Checker: Primer and Reference Manual. Addison-

Wesley, 2003.
12. R. Karp. A characterization of the minimum cycle mean in a digraph. Discrete

Mathematics, (23):309–311, 1978.
13. K. Larsen and A. Skou. Bisimulation through probabilistic testing. In POPL,

pages 344–352, 1989.

14. C. Papadimitriou. Computational Complexity. Addison-Wesley Publishing, Read-
ing, MA, USA, 1994.

15. A. Pnueli and R. Rosner. On the synthesis of a reactive module. In POPL, pages
179–190, 1989.

16. A. Solar-Lezama, C. Jones, and R. Bod́ık. Sketching concurrent data structures.
In PLDI, pages 136–148, 2008.

17. A. Solar-Lezama, R. Rabbah, R. Bod́ık, and K. Ebcioglu. Programming by sketch-
ing for bit-streaming programs. In PLDI, pages 281–294, 2005.

18. M. Vardi. Automatic verification of probabilistic concurrent finite-state programs.
In FOCS, pages 327–338, 1985.

19. M. Vechev, E. Yahav, and G. Yorsh. Abstraction-guided synthesis of synchroniza-
tion. In POPL, pages 327–338, 2010.

	Quantitative Synthesis for Concurrent Programs,

