153 research outputs found

    Prediction of peptide and protein propensity for amyloid formation

    Get PDF
    Understanding which peptides and proteins have the potential to undergo amyloid formation and what driving forces are responsible for amyloid-like fiber formation and stabilization remains limited. This is mainly because proteins that can undergo structural changes, which lead to amyloid formation, are quite diverse and share no obvious sequence or structural homology, despite the structural similarity found in the fibrils. To address these issues, a novel approach based on recursive feature selection and feed-forward neural networks was undertaken to identify key features highly correlated with the self-assembly problem. This approach allowed the identification of seven physicochemical and biochemical properties of the amino acids highly associated with the self-assembly of peptides and proteins into amyloid-like fibrils (normalized frequency of β-sheet, normalized frequency of β-sheet from LG, weights for β-sheet at the window position of 1, isoelectric point, atom-based hydrophobic moment, helix termination parameter at position j+1 and ΔGº values for peptides extrapolated in 0 M urea). Moreover, these features enabled the development of a new predictor (available at http://cran.r-project.org/web/packages/appnn/index.html) capable of accurately and reliably predicting the amyloidogenic propensity from the polypeptide sequence alone with a prediction accuracy of 84.9 % against an external validation dataset of sequences with experimental in vitro, evidence of amyloid formation

    Emission Monitoring Mobile Experiment (EMME): An overview and first results of the St. Petersburg megacity campaign 2019

    Get PDF
    Global climate change is one of the most important scientific, societal and economic contemporary challenges. Fundamental understanding of the major processes driving climate change is the key problem which is to be solved not only on a global but also on a regional scale. The accuracy of regional climate modelling depends on a number of factors. One of these factors is the adequate and comprehensive information on the anthropogenic impact which is highest in industrial regions and areas with dense population – modern megacities. Megacities are not only “heat islands”, but also significant sources of emissions of various substances into the atmosphere, including greenhouse and reactive gases. In 2019, the mobile experiment EMME (Emission Monitoring Mobile Experiment) was conducted within the St. Petersburg agglomeration (Russia) aiming to estimate the emission intensity of greenhouse (CO2_{2}, CH4_{4}) nd reactive (CO, NOx_{x}) gases for St. Petersburg, which is the largest northern megacity. St. Petersburg State University (Russia), Karlsruhe Institute of Technology (Germany) and the University of Bremen (Germany) jointly ran this experiment. The core instruments of the campaign were two portable Bruker EM27/SUN Fourier transform infrared (FTIR) spectrometers which were used for ground-based remote sensing measurements of the total column amount of CO2_{2}, CH4_{4} and CO at upwind and downwind locations on opposite sides of the city. The NO2_{2} tropospheric column amount was observed along a circular highway around the city by continuous mobile measurements of scattered solar visible radiation with an OceanOptics HR4000 spectrometer using the differential optical absorption spectroscopy (DOAS) technique. Simultaneously, air samples were collected in air bags for subsequent laboratory analysis. The air samples were taken at the locations of FTIR observations at the ground level and also at altitudes of about 100 m when air bags were lifted by a kite (in case of suitable landscape and favourable wind conditions). The entire campaign consisted of 11 mostly cloudless days of measurements in March–April 2019. Planning of measurements for each day included the determination of optimal location for FTIR spectrometers based on weather forecasts, combined with the numerical modelling of the pollution transport in the megacity area. The real-time corrections of the FTIR operation sites were performed depending on the actual evolution of the megacity NOx_{x} plume as detected by the mobile DOAS observations. The estimates of the St. Petersburg emission intensities for the considered greenhouse and reactive gases were obtained by coupling a box model and the results of the EMME observational campaign using the mass balance approach. The CO2_{2} emission flux for St. Petersburg as an area source was estimated to be 89 ± 28 ktkm2^{-2} yr 2^{-2} , which is 2 times higher than the corresponding value in the EDGAR database. The experiment revealed the CH4_{4} emission flux of 135 ± 68 tkm 2^{-2} yr 1^{-1}, which is about 1 order of magnitude greater than the value reported by the official inventories of St. Petersburg emissions (∼ 25 tkm2^{-2} yr 1^{-1} or 2017). At the same time, for the urban territory of St. Petersburg, both the EMME experiment and the official inventories for 2017 give similar results for the CO anthropogenic flux (251 ± 104 tkm 2^{-2} yr 1^{-1} s. 410 tkm 2^{-2} yr 1^{-1}) nd for the NOx_{x} anthropogenic flux (66 ± 28 tkm2^{-2} yr 1^{-1} vs. 69 tkm 2^{-2} yr 1^{-1})

    Analysis of Antibody and Cytokine Markers for Leprosy Nerve Damage and Reactions in the INFIR Cohort in India

    Get PDF
    Leprosy is one of the oldest known diseases. In spite of the established fact that it is least infectious and a completely curable disease, the social stigma associated with it still lingers in many countries and remains a major obstacle to self reporting and early treatment. The nerve damage that occurs in leprosy is the most serious aspect of this disease as nerve damage leads to progressive impairment and disability. It is important to identify markers of nerve damage so that preventive measures can be taken. This prospective cohort study was designed to look at the potential association of some serological markers with reactions and nerve function impairment. Three hundred and three newly diagnosed patients from north India were recruited for this study. The study attempts to reflect a model of nerve damage initiated by mycobacterial antigens and maintained by ongoing inflammation through cytokines such as Tumour Necrosis Factor alpha and perhaps extended by antibodies against nerve components

    Does dietary calcium interact with dietary fiber against colorectal cancer? : a case-control study in Central Europe

    Get PDF
    BACKGROUND: An unfavorable trend of increasing rates of colorectal cancer has been observed across modern societies. In general, dietary factors are understood to be responsible for up to 70% of the disease’s incidence, though there are still many inconsistencies regarding the impact of specific dietary items. Among the dietary minerals, calcium intake may play a crucial role in the prevention. The purpose of this study was to assess the effect of intake of higher levels of dietary calcium on the risk of developing of colorectal cancer, and to evaluate dose dependent effect and to investigate possible effect modification. METHODS: A hospital based case–control study of 1556 patients (703 histologically confirmed colon and rectal incident cases and 853 hospital-based controls) was performed between 2000–2012 in Krakow, Poland. The 148-item semi-quantitative Food Frequency Questionnaire to assess dietary habits and level of nutrients intake was used. Data regarding possible covariates was also collected. RESULTS: After adjustment for age, gender, education, consumption of fruits, raw and cooked vegetables, fish, and alcohol, as well as for intake of fiber, vitamin C, dietary iron, lifetime recreational physical activity, BMI, smoking status, and taking mineral supplements, an increase in the consumption of calcium was associated with the decrease of colon cancer risk (OR = 0.93, 95% CI: 0.89-0.98 for every 100 mg Ca/day increase). Subjects consumed >1000 mg/day showed 46% decrease of colon cancer risk (OR = 0.54, 95% CI: 0.35-0.83). The effect of dietary calcium was modified by dietary fiber (p for interaction =0.015). Finally, consistent decrease of colon cancer risk was observed across increasing levels of dietary calcium and fiber intake. These relationships were not proved for rectal cancer. CONCLUSIONS: The study confirmed the effect of high doses of dietary calcium against the risk of colon cancer development. This relationship was observed across different levels of dietary fiber, and the beneficial effect of dietary calcium depended on the level of dietary fiber suggesting modification effect of calcium and fiber. Further efforts are needed to confirm this association, and also across higher levels of dietary fiber intake

    Comprehensive Gene and microRNA Expression Profiling Reveals a Role for microRNAs in Human Liver Development

    Get PDF
    BACKGROUND AND AIMS: microRNAs (miRNAs) are small noncoding RNAs that regulate cognate mRNAs post-transcriptionally. miRNAs have been implicated in regulating gene expression in embryonic developmental processes, including proliferation and differentiation. The liver is a multifunctional organ, which undergoes rapid changes during the developmental period and relies on tightly-regulated gene expression. Little is known regarding the complex expression patterns of both mRNAs and miRNAs during the early stages of human liver development, and the role of miRNAs in the regulation of this process has not been studied. The aim of this work was to study the impact of miRNAs on gene expression during early human liver development. METHODS: Global gene and miRNA expression were profiled in adult and in 9-12w human embryonic livers, using high-density microarrays and quantitative RT-PCR. RESULTS: Embryonic liver samples exhibited a gene expression profile that differentiated upon progression in the developmental process, and revealed multiple regulated genes. miRNA expression profiling revealed four major expression patterns that correlated with the known function of regulated miRNAs. Comparison of the expression of the most regulated miRNAs to that of their putative targets using a novel algorithm revealed a significant anti-correlation for several miRNAs, and identified the most active miRNAs in embryonic and in adult liver. Furthermore, our algorithm facilitated the identification of TGFbeta-R1 as a novel target gene of let-7. CONCLUSIONS: Our results uncover multiple regulated miRNAs and genes throughout human liver development, and our algorithm assists in identification of novel miRNA targets with potential roles in liver development

    Dual modification of Alzheimer’s disease PHF-tau protein by lysine methylation and ubiquitylation: a mass spectrometry approach

    Get PDF
    In sporadic Alzheimer’s disease (AD), neurofibrillary lesion formation is preceded by extensive post-translational modification of the microtubule associated protein tau. To identify the modification signature associated with tau lesion formation at single amino acid resolution, immunopurified paired helical filaments were isolated from AD brain and subjected to nanoflow liquid chromatography–tandem mass spectrometry analysis. The resulting spectra identified monomethylation of lysine residues as a new tau modification. The methyl-lysine was distributed among seven residues located in the projection and microtubule binding repeat regions of tau protein, with one site, K254, being a substrate for a competing lysine modification, ubiquitylation. To characterize methyl lysine content in intact tissue, hippocampal sections prepared from post mortem late-stage AD cases were subjected to double-label confocal fluorescence microscopy using anti-tau and anti-methyl lysine antibodies. Anti-methyl lysine immunoreactivity colocalized with 78 ± 13% of neurofibrillary tangles in these specimens. Together these data provide the first evidence that tau in neurofibrillary lesions is post-translationally modified by lysine methylation

    Amyloid Formation by the Pro-Inflammatory S100A8/A9 Proteins in the Ageing Prostate

    Get PDF
    BACKGROUND: The conversion of soluble peptides and proteins into polymeric amyloid structures is a hallmark of many age-related degenerative disorders, including Alzheimer's disease, type II diabetes and a variety of systemic amyloidoses. We report here that amyloid formation is linked to another major age-related phenomenon--prostate tissue remodelling in middle-aged and elderly men. METHODOLOGY/PRINCIPAL FINDINGS: By using multidisciplinary analysis of corpora amylacea inclusions in prostate glands of patients diagnosed with prostate cancer we have revealed that their major components are the amyloid forms of S100A8 and S100A9 proteins associated with numerous inflammatory conditions and types of cancer. In prostate protease rich environment the amyloids are stabilized by dystrophic calcification and lateral thickening. We have demonstrated that material closely resembling CA can be produced from S100A8/A9 in vitro under native and acidic conditions and shows the characters of amyloids. This process is facilitated by calcium or zinc, both of which are abundant in ex vivo inclusions. These observations were supported by computational analysis of the S100A8/A9 calcium-dependent aggregation propensity profiles. We found DNA and proteins from Escherichia coli in CA bodies, suggesting that their formation is likely to be associated with bacterial infection. CA inclusions were also accompanied by the activation of macrophages and by an increase in the concentration of S100A8/A9 in the surrounding tissues, indicating inflammatory reactions. CONCLUSIONS/SIGNIFICANCE: These findings, taken together, suggest a link between bacterial infection, inflammation and amyloid deposition of pro-inflammatory proteins S100A8/A9 in the prostate gland, such that a self-perpetuating cycle can be triggered and may increase the risk of malignancy in the ageing prostate. The results provide strong support for the prediction that the generic ability of polypeptide chains to convert into amyloids could lead to their involvement in an increasing number of otherwise apparently unrelated diseases, particularly those associated with ageing.Original Publication:Kiran Yanamandra, Oleg Alexeyev, Vladimir Zamotin, Vaibhav Srivastava, Andrei Shchukarev, Ann-Christin Brorsson, Gian Gaetano Tartaglia, Thomas Vogl, Rakez Kayed, Gunnar Wingsle, Jan Olsson, Christopher M Dobson, Anders Bergh, Fredrik Elgh and Ludmilla A Morozova-Roche, Amyloid formation by the pro-inflammatory S100A8/A9 proteins in the ageing prostate., 2009, PloS one, (4), 5, e5562.http://dx.doi.org/10.1371/journal.pone.000556

    Multi-laboratory assessment of reproducibility, qualitative and quantitative performance of SWATH-mass spectrometry

    Get PDF
    Quantitative proteomics employing mass spectrometry is an indispensable tool in life science research. Targeted proteomics has emerged as a powerful approach for reproducible quantification but is limited in the number of proteins quantified. SWATH-mass spectrometry consists of data-independent acquisition and a targeted data analysis strategy that aims to maintain the favorable quantitative characteristics (accuracy, sensitivity, and selectivity) of targeted proteomics at large scale. While previous SWATH-mass spectrometry studies have shown high intra-lab reproducibility, this has not been evaluated between labs. In this multi-laboratory evaluation study including 11 sites worldwide, we demonstrate that using SWATH-mass spectrometry data acquisition we can consistently detect and reproducibly quantify \u3e4000 proteins from HEK293 cells. Using synthetic peptide dilution series, we show that the sensitivity, dynamic range and reproducibility established with SWATH-mass spectrometry are uniformly achieved. This study demonstrates that the acquisition of reproducible quantitative proteomics data by multiple labs is achievable, and broadly serves to increase confidence in SWATH-mass spectrometry data acquisition as a reproducible method for large-scale protein quantification.SWATH-mass spectrometry consists of a data-independent acquisition and a targeted data analysis strategy that aims to maintain the favorable quantitative characteristics on the scale of thousands of proteins. Here, using data generated by eleven groups worldwide, the authors show that SWATH-MS is capable of generating highly reproducible data across different laboratories
    corecore