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ARTICLE

Multi-laboratory assessment of reproducibility,
qualitative and quantitative performance of
SWATH-mass spectrometry
Ben C. Collins 1, Christie L. Hunter2, Yansheng Liu 1, Birgit Schilling3, George Rosenberger 1,4,

Samuel L. Bader5, Daniel W. Chan6, Bradford W. Gibson3,7, Anne-Claude Gingras8,9, Jason M. Held10,

Mio Hirayama-Kurogi11, Guixue Hou12, Christoph Krisp13, Brett Larsen8, Liang Lin12, Siqi Liu12, Mark P. Molloy13,

Robert L. Moritz 5, Sumio Ohtsuki11, Ralph Schlapbach14, Nathalie Selevsek14, Stefani N. Thomas 6,

Shin-Cheng Tzeng10, Hui Zhang6 & Ruedi Aebersold1,15

Quantitative proteomics employing mass spectrometry is an indispensable tool in life science

research. Targeted proteomics has emerged as a powerful approach for reproducible quan-

tification but is limited in the number of proteins quantified. SWATH-mass spectrometry

consists of data-independent acquisition and a targeted data analysis strategy that aims to

maintain the favorable quantitative characteristics (accuracy, sensitivity, and selectivity) of

targeted proteomics at large scale. While previous SWATH-mass spectrometry studies have

shown high intra-lab reproducibility, this has not been evaluated between labs. In this multi-

laboratory evaluation study including 11 sites worldwide, we demonstrate that using SWATH-

mass spectrometry data acquisition we can consistently detect and reproducibly quantify

>4000 proteins from HEK293 cells. Using synthetic peptide dilution series, we show that the

sensitivity, dynamic range and reproducibility established with SWATH-mass spectrometry

are uniformly achieved. This study demonstrates that the acquisition of reproducible quan-

titative proteomics data by multiple labs is achievable, and broadly serves to increase con-

fidence in SWATH-mass spectrometry data acquisition as a reproducible method for large-

scale protein quantification.
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Reproducibility is an essential foundation of scientific
research. Recent reports have concluded that a significant
fraction of life science research shows poor reproducibility

of results and this poses a major challenge to scientists, science
policy makers, funding agencies, and the pharma and biotech
industry sectors1–3. The reasons for irreproducibility of research
results are many, including inadequate study design and data
analysis, limited data quality, incompletely characterized research
reagents, poorly benchmarked techniques, and a range of other
confounding factors.

The question of whether specific data acquisition methods and
platforms are capable of generating reproducible results is best
addressed by inter-laboratory studies, where samples of known
composition and quality are analyzed across different settings.
Such studies have been reported for various “omics” technologies,
including RNA-seq and microarray techniques, with varying
results4, 5. Such projects have served to highlight problems in
various large-scale strategies, to stimulate discussion in a given
field on how to improve reproducibility, and in the best cases to
provide confidence in a given strategy within and beyond an
analytical field.

In the field of mass spectrometry (MS) based proteomics, a
wide range of specific methods have been reported over the past
two decades. These can be broadly grouped into discovery and
targeted proteomic techniques. The general aim of discovery
proteomics is the unbiased identification and quantification of the
protein components of biological samples. This is most frequently
achieved by data-dependent acquisition (DDA) MS. If the num-
ber of precursor ions exceeds the number of precursor selection
cycles6, precursor selection becomes stochastic and the peptides
detected in repeat analyses become irreproducible. This has
been documented in a number of intra- and inter-laboratory
studies7–9. In general, these studies confirmed that a high degree
of reproducibility is difficult to achieve for complex samples10.
Computational methods to enable improved quantification via
propagation of peptide identifications across runs via alignment
of MS1 precursor signals, first introduced as accurate mass and
time tags (AMT)11, 12, are commonly applied to DDA data13–16

and can reduce this issue to some degree in discrete data sets
where chromatographic alignment can reasonably be applied.

In contrast to discovery proteomics the general aim of targeted
proteomics is the detection and quantification of a predetermined
set of peptides by selected reaction monitoring (SRM) also known
as multiple reaction monitoring (MRM)17, or a related technique
parallel reaction monitoring18–20. Because targeted MS eliminates
the stochastic component of precursor ion selection in DDA, it
has the potential for high reproducibility. This has been
demonstrated in intra-laboratory studies where sets of peptides
were targeted with a high degree of reproducibility across rela-
tively large sample sets21–23 and by inter-laboratory studies
focused on exploring the use of SRM and immuno-SRM for
biomarker studies24–29. Targeted MS is now broadly regarded as a
reproducible protein analysis platform17. However, the number of
proteins measured is restricted (usually to ~100 per injection),
limiting its utility for many applications.

SWATH-MS is a more recently introduced approach to
MS-based proteomics30. It consists of data-independent acquisi-
tion31, 32 (DIA) in which all precursor ions within a user defined
m/z window are deterministically fragmented. Analysis of
SWATH-MS data most often relies on a targeted data analysis
strategy in which target peptides are detected and quantified from
the SWATH-MS fragmentation data by extracting and correlating
previously generated query parameters for each target. In this
scheme each unique peptide of interest at a given precursor
charge state is queried for in the data, resulting in the detection
and scoring of co-eluting transition group signals and associated

underlying mass spectral features, referred to as peak groups.
Because the method specifically tests for the presence of each
target peptide in the essentially complete fragment ion map of
each sample, it eliminates the stochastic sampling element of
DDA and helpfully provides a direct statistical measure (e.g., q-
value) of whether the peptide is present at a detectable level in the
sample. This data analysis strategy, whereby target peptides are
directly queried for, has recently been generalized using the term
peptide-centric33, 34 scoring to distinguish from more classical
approaches where the MS2 spectrum is the query unit for data
analysis (referred to as spectrum-centric scoring). The SWATH-
MS implementation of the DIA concept therefore preserves the
favorable performance characteristics of SRM, while vastly
expanding the measurement capacity to thousands of proteins per
injection. Of consideration in SWATH-MS is the complexity of
the resultant spectra and specific software tools have been com-
piled to analyze such highly multiplexed data using various
approaches35–38. A recent study comparing software tools for the
analysis of DIA data using either peptide-centric or spectrum-
centric approaches has demonstrated that very similar qualitative
and quantitative results can be obtained when analyzing a
benchmarking data set39. SWATH-MS and related DIA approa-
ches have achieved a high degree of reproducibility in intra-
laboratory studies in a variety of research questions such as
interaction proteomics40, 41, plasma proteomics42, tissue pro-
teomics43, microbial proteomics44, 45, pre-clinical toxicology9,
analysis of genetic reference strains46, and many others. However,
interlaboratory robustness and reproducibility of SWATH-MS
data acquisition has not been demonstrated.

In this study, we set out to test the reproducibility of peptide
and inferred protein detection and quantification by SWATH-MS
in an inter-laboratory study. To achieve this goal we distributed
benchmarking samples to 11 participating laboratories worldwide
for measurement by SWATH-MS according to a predetermined
schedule. We analyzed the data from all sites centrally with two
separate scopes in mind. Firstly, we analyzed all of the data in an
aggregated way to simulate, for example, a large cohort study
whereby patient samples would be analyzed in multiple labora-
tories, aiming to achieve a result set based on all samples. In the
second interpretation, we analyzed the data from each site of
collection independently and compared the results across sites
post analysis facilitating a direct performance comparison.

Our analysis demonstrated that the set of proteins detected and
quantified across all participating sites, i.e., from a total of 229
proteome measurements, was very consistent. The reproduci-
bility, linear dynamic range, and sensitivity are approaching those
reported for SRM, currently the gold standard approach for
protein quantification17, 30, 47. This data supports the conclusion
that DIA combined with peptide-centric scoring embodied by the
SWATH-MS approach is suitable for both comprehensive and
reproducible proteomics at a large scale and across laboratories.

Results
Study design and implementation. To assess the inter- and
intra-laboratory reproducibility and performance of SWATH-MS
for large-scale quantitative proteomics, we created a bench-
marking sample set and distributed aliquots to 11 laboratories
worldwide (Fig 1a). The sample consisted of 30 stable isotope-
labeled standard (SIS) peptides48 diluted into a complex back-
ground consisting of 1 µg of protein digest from HEK293 cells. To
achieve both, a physiologically relevant fold change step, and to
cover a large linear dynamic range in a relatively small number of
samples that could be analyzed in a 24 h period, we elected to
partition the SIS peptides into five groups (A–E), each containing
six peptides. In each group, the dilution series started from a
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different level ranging from 1 fmol to 10 pmol (sample S5). The
MS responses of the peptides were measured, ranked, and they
were assigned evenly to the five groups (A–E) to ensure there was
a range of peptide responses across in each group concentration
group. The peptides were then diluted serially threefold into the
HEK293 background four times (samples S1–S4). This generated
an overall dilution series from 0.012 to 10,000 fmol on column,
with a linear dynamic range over six orders (although not covered
by any single SIS peptide—Supplementary Data 1 and 2). We
acquired all data in SWATH-MS mode, set to 64 variable width
Q1 windows chosen to minimize window size in high density
precursor ion ranges (Supplementary Data 15).

To standardize the SWATH-MS acquisition protocol and to
make an initial quality assessment, we first asked each site to
acquire five replicate injections of a test sample containing only
the HEK293 background. This data was used to improve quality
control procedures and to ensure adequate system performance at
all sites (Supplementary Fig. 1; Supplementary Note 1). The
finalized study protocol is provided (Supplementary Methods).
All sites used the same mass spectrometer (SCIEX TripleTOF
5600 / 5600+ systems), while the nanoLCs consisted of various
models from the same vendor (SCIEX). The chromatographic

columns had the same dimensions (30 cm × 75 µm) although nine
sites used cHiPLC microfluidic systems and two sites used self-
packed columns with emitters and, as such, therefore also used
different chromatographic resins (see “Methods”). After the
initial quality control phase, participating labs acquired SWATH-
MS data for the main sample set consisting of samples S1–S5 with
sample S4 injected in technical triplicate, and repeated this
acquisition scheme two further times during 1 week. The purpose
of this design was to determine reproducibility and quantification
metrics within 1 day, across 1 week, or across different sites of
data collection. These measurements resulted in a data set
containing in total 229 SWATH-MS files from the 11 sites
worldwide that are freely accessible for further analysis by the
community.

Consistency of protein detection. The qualitative similarity of
SWATH-MS data acquired at different sites was investigated by
comparing the set of inferred proteins detected from the HEK293
proteome across all 229 SWATH-MS data files. Targeted analysis
was performed using the OpenSWATH software35 combined
with a previously published SWATH-MS spectral library
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Fig. 1 Study design and implementation. a A set of 30 SIS peptides partitioned into five groups (A–E, six peptides in each) were diluted into a HEK293 cell
lysate to span a large dynamic range. Starting at a different upper concentration for each group, they were threefold diluted into the matrix to cover a
concentration range from 12 amol to 10 pmol in 1 µg of cell lysate. This created a set of five samples to be run by SWATH-MS on the TripleTOF
5600/5600+ system at each site. Each sample was run once per day on day 1, 3, and 5, with the exception of sample 4 which was run 3× on each day.
b After data acquisition, the 229 SWATH-MS files were assembled centrally and processed using two strategies. The SIS peptide concentration curves
were assessed using MultiQuant Software, allowing for the determination of linear dynamic range (LDR), and LLOQs for each peptide. In addition, the intra-
and inter-day CVs were determined before and after normalization. The HEK293 proteome matrix data was analyzed using the OpenSWATH pipeline and
the Combined Human Assay Library consisting of ~10,000 proteins. The false discovery rate was controlled at the peptide query and protein level using
PyProphet. Protein abundances were inferred by summing the top five most abundant fragment ions from the three most abundant peak groups using the
aLFQ software. We then used protein abundances to cluster, and compute Pearson correlation coefficients, for all samples from all sites
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containing peptide query parameters mapping to 10,000+ human
proteins49 (Fig. 1b). The false discovery rate (FDR) was controlled
at 1% at the peptide query and protein levels using the q-value
approach50–54 in the global context, and at 1% peptide query FDR
on a sample-by-sample basis. We did not employ any alignment
or transfer of peptide identification confidence between runs. A
description of FDR calculation, and issues surrounding this, is
provided in Supplementary Note 2 and in a related paper
explaining FDR considerations in detail55.

The results are shown in Fig. 2. In Fig. 2a, we depict the
number of proteins detected across all SWATH-MS acquisitions
in the aggregated data analysis (equivalent plot at peptide query
level in Supplementary Fig. 2). The total number of proteins
detected at 1% FDR over the entire data set is 4984 from 40,304
proteotypic peptide peak groups (Supplementary Data 3). The
median number of proteins detected per file is 4548 from a
median of 31,886 peak groups. A total of 4077 proteins were
detected in >80% of all samples. Figure 2b shows the distribution
of complete/missing values from this data. Of the 4984 proteins
detected, 3985 were detected using >1 peptide peak group and, on
average, we detected 8.1 proteotypic peptides per protein
(Supplementary Fig. 3). Information regarding mass spectro-
metric and chromatographic performance metrics across the sites
that might affect the number of proteins detected is provided in
Supplementary Figs. 4–9. The accumulation of new protein
identifications over the data set—indicated by the blue curve in
Fig. 2a—saturates, indicating the comprehensiveness of the
SWATH-MS methodology and the minimal number of accumu-
lated false positive identifications across 229 measurements. This
also indicates that when we analyzed the data in an aggregated
manner (i.e., data from all sites combined), the set of proteins
detected by all labs is very consistent. Achieving this consistency
was dependent on appropriate FDR control in the global context
at both peptide query and protein level. To illustrate this, we
plotted the numbers of peak groups and proteins detected when

FDR was controlled only at peptide query level and not the
protein level, and only on a sample-by-sample basis and not in
the global context (Supplementary Fig. 10). The accumulation of
new peak groups steadily increased across the data set, indicating
a likely accumulation of false positives and, highlighting the
importance of appropriate global FDR control55, 56. We
computed the repeatability of detection at the peptide and
protein levels, similar to Tabb et al.7, defined as the pairwise
percent overlap between any two runs. The range of median
repeatability within sites was 90.0–98.2% at the protein level and
79.5–95.5% at the peptide level (Supplementary Fig. 11). The
median repeatability over the entire data set from all sites was
91.6% at the protein level and 79.5% at the peptide level.

The comparison between the protein detection rates from the
aggregated analysis and an individual site-by-site analysis also
provides insight into FDR control. Figure 2c shows the number of
proteins detected when the data from each site was first analyzed
separately by site of data collection with independent FDR
control and then aggregated (equivalent plot at peptide query
level in Supplementary Fig. 12). In this analysis, the procedure
was identical to that of the aggregated analysis, except that the
global context for FDR control mentioned above was restricted to
the files from an individual site, and that procedure was repeated
for each site individually. The information content of the data
from each site is different, which likely relates to performance
differences between chromatographic, nanospray ionization and/
or instrument efficiencies across sites at the time of data
acquisition. When the data is aggregated before analysis and
FDR control, the higher quality data effectively supports the lower
quality data, because the strict scoring cutoffs required by the 1%
protein FDR threshold only needs to be achieved once per protein
in the global context, leading to more homogenous results in
terms of proteins detected. That is, in our analysis, a protein is
considered detected in a given sample if it is detected at the 1%
peptide query FDR threshold as long as the peptide has been
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Fig. 2 A consistent set of proteins is detected across sites. a The number of proteins detected in each of the 229 SWATH-MS analyses is shown ordered by
site of data collection and then chronologically by time of acquisition. After filtering the data set in a global fashion at 1% FDR at the peptide query and
protein levels, a protein was considered detected in a given sample when a peak group for that protein was detected at 1% FDR in the context of that
sample (see Supplementary Note 2 for a detailed discussion of FDR). The blue line indicates the cumulate set of proteins detected with each new sample
moving from left to right. The maximum of the blue line indicates the set of proteins detected at 1% FDR in the global context. The saturation of the number
of proteins detected after a few samples indicates that the set of proteins observed by all sites is highly uniform. b A protein abundance matrix on the
log2 scale is shown for 229 SWATH-MS analyses from all sites corresponding to the set of proteins shown in a. White indicates a missing protein
abundance value where a given protein was not confidently detected in a given sample. The proteins are ordered from top to bottom first by row
completeness and then by protein abundance. c Equivalent to a except that the analysis and FDR control is carried independently out on a site-by-site basis
instead of aggregated across all sites before analysis and FDR control
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detected elsewhere in the experiment with a score passing the 1%
protein FDR threshold (Supplementary Note 2).

From these analyses, we can conclude that using SWATH-MS
data collected from instruments in different labs, the set of
proteins detected is comparable (Fig. 2a, b). This presents a
desirable quality not previously demonstrated at this scale in
large-scale proteomics analysis.

Reproducibility of quantification. Having established a high
degree of reproducibility of protein detection within and across
sites, we went on to investigate the quantitative characteristics of
our inter-lab SWATH-MS data set. To determine quantitative
reproducibility we computed the coefficient of variation (CV) at

different levels. Firstly, we extracted ion chromatograms (XIC) for
the SIS peptides and summed the XICs to obtain peptide peak
areas using the MultiQuant software (Supplementary Data 4).
Next, we computed the CV for each site within 1 day (intra-day)
and over the week (inter-day) for the S4 sample, which was
acquired every day in triplicate. The median for site intra-day and
inter-day CVs (expressed as median± standard deviation) were
5.5± 2.9% and 8.9± 11.1%, respectively (Fig. 3a, Supplementary
Data 4 and 5). For the majority of sites the intra-day and inter-
day CVs were below 20% (one lab—Site 8—experienced some
larger LC–MS variance over the course of the week with
decreasing signals that was later explained by a contaminated
collision cell). As the signal response varies between instruments,
attempting to directly compare raw peak area or intensities across
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Fig. 3 Reproducibility of SWATH-MS measurements. a The CVs of peak areas for each of the 30 SIS peptides for S4 sample, depicted on the y-axis using
logarithmic scaling, were determined at the intra-day level within the site (light blue—without normalization, dark blue with normalization), inter-day level
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4077 proteins that were detected in >80% all samples were computed at the intra-day level within the site, inter-day with site, and inter-site (i.e., all
229 samples in the study). c The inter-site CVs were binned based on log2 protein abundance to visualize the dependence of CV on protein abundance
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sites is not feasible. To determine if we could normalize the
instrument response differences by applying a simple normal-
ization, we used the quantitative information from the HEK293
proteome that is expected to be invariant. Specifically, the peptide
peak areas from the automated OpenSWATH analysis for each of
the 229 files were re-scaled such that the median values from each
file were equalized. The resulting protein abundance boxplots in
Supplementary Fig. 13 clearly shows the effect of this simple
normalization. The normalization coefficients (Supplementary
Fig. 14) were used to adjust the peptide peak areas for the SIS
peptides derived from the MultiQuant analysis and the intra-day
and inter-day CV analysis was repeated (Fig 3a). We then cal-
culated the inter-site CVs for the SIS peptides using all mea-
surements of the S4 sample from all sites. The median of the
inter-site CVs using peptide peak areas without normalization
was 47.3± 13.9%. After normalization, this was reduced to 21.3
± 10.3%. Normalization also reduced the median within site
inter-day CV from 8.9± 11.0 to 5.8± 5.4% whereas the intra-day
CV was less strongly affected (5.5± 2.9 to 4.7± 2.3% intra-day
CV) (Supplementary Data 4 and 5). The CVs obtained are in a
range comparable with previous direct comparisons of SWATH-
MS and SRM47.

We next elected to examine the CV at protein level in the
HEK293 proteome across 21 SWATH-MS acquisitions at each
site. Protein level abundances were inferred from the Open-
SWATH results by summing the top five most intense fragment
ion areas from the top three most intense peak groups per
protein42, 44, 57 (Supplementary Data 6 and 7). For proteins where
<3 peak groups were detected, all the available fragments were
summed. The CVs, computed from the 4077 proteins that were
detected in >80% of all samples, at the intra-day, inter-day, and
inter-site levels were 8.3± 16.2, 11.9± 17.2, and 22.0± 17.4%

respectively, after peptide level median normalization (Fig. 3b).
The inter-site protein CV as a function of protein abundance is
shown in Fig 3c.

Linearity and dynamic range. To determine the linearity and
dynamic range characteristics of SWATH-MS data within and
across the sites we first examined the dilution series of SIS pep-
tides in response curves generated from the MultiQuant Software
XIC analysis. A representative example for a single site is shown
in Fig 4a (remaining sites in Supplementary Fig. 15; equivalent
plots separated by peptide are shown in Supplementary Fig. 16;
source data in Supplementary Data 8). Peak integration for the
lowest concentration peptides was manually inspected to confirm
correct peptide detection and that lower limits of quantitation
conformed with good bioanalytical standards (<20% CV,
80–120% accuracy, and S/N> 20 at the lower limit of quantita-
tion (LLOQ)58). Low concentration data points failing these
assessments were removed and the next higher concentration was
evaluated. This was repeated until a good LLOQ was found.
Manual integration adjustments were only done in the cases
where there were clear interferences that could be removed.

To obtain an overview of the linearity and dynamic range of
the SWATH-MS method between sites, we computed the average
peptide peak area (unnormalized) of the SIS peptides at a given
concentration point and plotted this as averaged response curve
for each site (Fig 4b, Supplementary Data 9). By averaging over
six peptides that have variable responses we obtained a
representative picture of the linearity and dynamic range of the
method (as opposed to that of individual peptides that are more
frequently of greater interest in targeted proteomics studies which
employ dilution curves). The linear regressions for the average
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Fig. 4 Dynamic range and linearity. a The response curves for each of the 30 SIS peptides for Site 1 were determined and plotted together (corresponding
plots for all other sites are shown in Supplementary Fig. 13). b From this data, an average response curve for each site was constructed by averaging
(mean) the responses of peptides at the same concentration point. This visualization facilitates comparison of both the dynamic range and average
response between sites. c The average response curves from b replotted after the normalization has been applied. d The proteins detected in the SWATH-
MS analysis of the HEK293 proteome matrix were mapped onto a previous in-depth DDA analysis of the U2OS cell line that employed multi-level
fractionation to achieve deep proteome coverage. To demonstrate the dynamic range achieved by the single-shot SWATH-MS analysis we plotted the
proteins detected by SWATH-MS binned by the protein copies per cell value (log10 scale) determined from the in-depth U2OS DDA study60. In the range
105−107 copies per cell the proteome coverage is essentially complete and decreases with lower copies per cell bins
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peptide area curve for each site was computed and the R2 values
averaged 0.97 (R2 values for individual peptides are in
Supplementary Data 8). There was signal saturation for the
highest concentration point (10,000 fmol), and removal of that
point increased the R2 to 0.99. Since this study was performed, a
newer instrument platform (TripleTOF 6600) has increased linear
dynamic range through a different detection system, and signal
saturation at high peptide load would be significantly reduced in
this case. The average response curves were very similar between
sites, all exceeding 4.45 orders of linear dynamic range including
all data points, with an average across sites of 4.6 (Supplementary
Data 9). Dynamic range was computed by taking the log base 10
of the concentration of the highest point divided by the LLOQ
concentration.

By applying the average peak area and average response curves,
the data showed that the linearity and dynamic range for each site
is qualitatively similar in terms of slope and span. The raw peak
areas obtained from each site, however, are offset by a fixed
amount across the dynamic range. When the same averaged
response curve plot was constructed from values normalized
based on the HEK293 proteome background, the response curves
were well overlaid (Fig. 4c). The peptide peak area fold change
between dilution steps averaged 2.66 across the concentration
range, reflecting the three-fold dilution series (ratios in the middle
of the linear dynamic range are close to 3 with some
compression59 of the ratio at the lowest and highest concentra-
tion points—Supplementary Fig. 17). The mean fold change for
expected ratios of ninefold and 27-fold were 7.49 and 19.6,
respectively. The ratio compression is partly explained by the
high peptide loads (low pmol on column range) used at the upper
end of the dilution series, higher than are commonly used for this
experiment type, which caused some MS signal saturation.

We next attempted to assess the dynamic range of the
measurements at the protein level in the HEK293 proteome. At

the protein level, no internal standard was available on which to
judge dynamic range. Therefore, as a surrogate measure, we
mapped the set of proteins detected in our experiment onto a
previous in-depth proteomic characterization of U2OS cells
which estimated the copy numbers of proteins per cell60.
Although the reference data is from a different cell line, an in-
depth quantitative comparison of these two cell lines has shown
that the protein abundances are well correlated (Pearson
correlation ~0.8)61 making this a reasonable surrogate measure.
From this data we can estimate that the set of proteins detected by
SWATH-MS in the HEK293 cell proteome spans ~4.5 orders of
magnitude, with the upper ~2.5 orders of magnitude being highly
complete (Fig. 4d).

Sensitivity in SWATH-MS and MS1. Based on the experimental
design, there is an expected number of the SIS peptides that could
be detected at each concentration (Fig. 1a). To get a broad view of
the LLOQ across the study, we plotted the percentage of the 30
SIS peptides that were reliably detected (LLOQ and above) at each
concentration in the dilution series from each site (Fig. 5a, Sup-
plementary Data 10). Interestingly, the curves depicting %
detection of peptides for the SWATH-MS data across different
sites of data collection are uniform, indicating that consistent
sensitivity can be achieved at different sites despite the high
complexity background. The LLOQ for SWATH-MS data span-
ned the mid-attomole to low-femtomole range. Despite the higher
complexity background proteome used in this study, the results
are in good agreement with data previously obtained30, 47.

To determine whether the LLOQ assessed by MultiQuant
analysis corresponded to the automated OpenSWATH FDR-
based analysis, we plotted the LLOQ (MultiQuant) and the lowest
concentration detected by OpenSWATH for the peptides in
groups A and B that span the low-attomole to low-femtomole

100

80

60

40

20

SWATH
1
2
3
4
5
6
7
8
9
10

SWATH
MS1 C12

MS1 C12+C13

Site 1 — SWATH
Site 1 — MS1 C12
Site 1 — MS1 C12+13

11
Ave

1
2
3
4
5
6
7
8
9
10
11
Ave

0

0.
01 0.
1 1 10 10
0

10
00

10
,0

00

Concentration (fmol on column)

0.
01 0.
1 1 10 10
0

10
00

10
,0

00

Concentration (fmol on column)

0.
01 0.
1 1 10 10
0

10
00

10
,0

00

Concentration (fmol on column)

0.
01 0.
1 1 10 10
0

10
00

10
,0

00

Concentration (fmol on column)

%
 P

ep
tid

e 
de

te
ct

io
n

100

80

60

40

20

0

%
 P

ep
tid

e 
de

te
ct

io
n

100

80

60

40

20

0

%
 P

ep
tid

e 
de

te
ct

io
n

100

80

60

40

20

0

%
 P

ep
tid

e 
de

te
ct

io
n

a c

b d

Fig. 5 Lower limit of quantification in SWATH-MS and MS1. The percentage of the 30 SIS peptides detected at each concentration in the dilution series
from each site of data collection was plotted at the SWATH-MS level a and the MS1 level b. Lower limit of quantification was defined as <20% CV, S/N>
20, 80–120% accuracy using linear fit with 1/x weighting in the response curve. Spectral peak widths for XIC generation were 0.02 m/z for MS1 and 0.05
m/z for SWATH-MS2, and the nominal resolving power was 30,000 and 15,000, respectively. c The average % detection at each concentration for all sites
was determined (bold line in a and b) and overlaid to summarize detection differences between SWATH-MS and MS1 data. For the MS1 data, the C12 and
C13 XIC data was also summed for comparison. Error bars are ± 1 standard deviation. d The data from a single site (site 1) is also shown for comparison
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range (Supplementary Fig. 18). For eight detectable peptides in
these groups, six had an LLOQ at the same concentration as the
lowest detectable by the FDR-based OpenSWATH analysis and
the remaining two peptides had a difference of one 3× dilution
step, indicating a good agreement between these methods. We
further examined the correspondence in linearity of all SIS
peptides as determined by MultiQuant or OpenSWATH and
found this to be comparable over the majority of the concentra-
tion range, however, OpenSWATH failed to fully integrate very
wide chromatographic peaks in the 3–10 pmol range which

resulted in saturation for these concentrations (Supplementary
Note 3, Supplementary Fig. 19).

As the SWATH-MS acquisition method also contains an
MS1 scan in every cycle, we were able to extract XICs at the MS1
level and determine the LLOQ in MS1 mode using similar criteria
for evaluating the individual peptide concentration curves and the
LLOQ as was used for the SWATH-MS data (Fig. 5b). Average
lines were computed for each mode of quantification and plotted
together for easy visualization (Fig. 5c, d). In our data set the
LLOQ of peptides using SWATH-MS2 quantification is nearly 1
order of magnitude lower than in MS1. The benefit in this case is
explained in terms of selectivity but not absolute signal
abundances. While the signal intensity of the precursor in MS1
is typically higher than the fragment ions from the SWATH-MS
signal, the MS1 XICs become contaminated with interfering
signals as the LLOQ is approached, whereas the SWATH-MS
signal generally has less interference at lower analyte concentra-
tions (Supplementary Figs. 20–22, Supplementary Note 4, and
Supplementary Data 11 and 12). As with SWATH-MS data,
manual inspection of the MS1 data was performed and low
concentration peaks not meeting LLOQ requirements were
removed. This difference between SWATH-MS and MS1 level
sensitivity has also been previously reported30, 35, although
usually with smaller differences between MS1 and SWATH-MS
LLOQs that may be explained by the higher complexity of the
sample matrix in this study or by the increased number of
precursor isolation windows with reduced width compared with
previous analyses. Additionally, when compared to the SWATH-
MS result, the MS1 data yielded a more divergent detection rate at
each concentration across sites, demonstrating that MS1 profiling
has a less consistent sensitivity between labs. SWATH-MS
demonstrated improved intra-lab reproducibility compared with
MS1 with CV values of 8.8 and 13.2%, respectively (Supplemen-
tary Fig. 23).

Global similarity of quantitative protein abundance profiles.
Finally, we elected to examine the global similarity of the nor-
malized quantitative protein abundances determined by
SWATH-MS across the different sites of data collection. We
performed a hierarchical clustering of the study-wide log2 protein
abundance matrix and plotted the resulting dendrogram in
Fig. 6a. The data broadly clusters by site of data collection,
whereas the day of data collection within one site generally does
not cluster. To determine the similarity of the protein abundance
profiles more quantitatively, we computed a pairwise Pearson
correlation matrix based on the normalized log2 protein abun-
dances of the common proteins from each pair of runs (Fig. 6b).
The median Pearson correlation of log2 protein abundances
across the entire data set was 0.940. On average, the median
Pearson correlation within a given site of data collection was only
slightly higher at 0.971 (the range of site medians was
0.948–0.984). The minimum pairwise Pearson correlation
between any two of the 229 files across the study was 0.868. From
the above analyses, we can conclude that the quantitative simi-
larity within sites of data collection is only marginally higher than
between sites of data collection.

Discussion
The importance of quantitative proteomics in clinical and basic
research is expanding rapidly because proteins provide a direct
insight into the biochemical state of the cell. To determine the
utility of particular proteomic technologies a thorough and
objective assessment of their performance is essential. For the
widespread application of the technology, robustness, reprodu-
cibility, quantitative accuracy, data comprehensiveness and
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completeness are critically important performance parameters62.
Targeted proteomics via SRM is a proven technology receiving
high grades with respect to these metrics. The Clinical Proteomic
Technologies for Cancer Initiative as part of the Clinical Pro-
teomic Tumor Analysis Consortium (CPTAC) projects24, 26, 27

have demonstrated that the robust application of SRM across
different labs is achievable and an Atlas of SRM assays for the
entire human proteome has been published63. These results
suggest that distributed studies with hundreds to thousands of
samples and data integration between labs are becoming feasible.
They also generally increased the confidence that smaller and
larger scale, comparative proteomic studies are a reality. However,
the feasibility of larger scale sample comparisons on protein
numbers which exceed that quantifiable by SRM by orders of
magnitude has not been demonstrated. SWATH-MS is a tech-
nique that has the potential to achieve this ambitious objective.
The goal of our study was to characterize the performance of
SWATH-MS data acquisition across different laboratories.

The data set analyzed in this study supports a number of
conclusions relating to the above stated questions. Firstly, the set
of proteins we detected across all sites is very similar and is
effectively saturated after a small number of files are analyzed.
This indicates that the level of data completeness from a protein
quantification perspective is very high, a quality which is desirable
in comparative studies. In this study, we have evaluated technical
reasons for missing data in relation to measurement variation.
Challenges associated with missing data related to biological
variation are discussed in Supplementary Note 5.

Notably, the spectral library and peptide query parameters we
used to perform the analysis of the SWATH-MS data were pre-
viously published49 and built by a single lab independent of the
current study, illustrating the generic applicability of such spectral
libraries. Appropriate FDR control was key to achieving this
result. Extending the FDR control to the global context (com-
puted over all files in the analysis), in addition to extending the
FDR control from the peptide query to the protein level, were
critical in the project where large numbers of samples were
analyzed using a large number of peptide queries. In a related
manuscript we discuss issues relating to FDR control in DIA data
in detail55.

We expect that a DDA-based study could not achieve such a
high level of completeness across labs due to stochastic
MS2 sampling7 and such a study is likely to experience difficulty
aligning MS1 signals arising from different labs where chroma-
tography will inevitably vary (Supplementary Fig. 4). Importantly,
our analysis method did not employ any alignment or propaga-
tion of peptide identifications as is commonly used in MS1
quantification from DDA data, however, we anticipate that data
completeness might be further improved using a feature align-
ment strategy recently developed for SWATH-MS64. Secondly,
the quantitative characteristics in terms of reproducibility, limit of
detection, and linear dynamic range were also highly comparable
across the data from all sites. Again, with regard to large-scale
proteome quantification (i.e., 4000+ proteins) across laboratories
in >200 measurements, these findings are unprecedented and
have evolved to a level where many of the previously described
limitations of data acquisition in MS-based proteomics62 are
being significantly overcome.

In the course of analyzing the data, some interesting char-
acteristics of SWATH-MS data became apparent. For example,
one observation relates to the absolute signal response of
instruments from various sites, which as expected, was variable.
Interestingly, the slope, linearity and dynamic range of the
response curves from the SIS peptide dilution series are essentially
uniform across sites with only an offset in the intensity dimension
differing (Fig. 4c). Further, the number of proteins detected at a

given site was only moderately correlated with signal intensity
(Supplementary Fig. 8). This suggests that the absolute signal
intensity is not the critical metric in determining the data quality,
but probably rather the signal-to-noise ratio. These observations
have important consequences for normalization of label-free
quantitative data and, in our study, facilitated the use of a simple
global median normalization based on all of the available peptide
signals from the HEK293 background proteome to effectively
make the data comparable without the use of internal standards.
Here, we highlight an advantage of SWATH-MS data; i.e., as with
MS1/DDA-based quantification and, unlike more classical tar-
geted methods such as SRM, there are large numbers of peptides
available for global normalization that can be used in sample
types where the assumptions underlying this type of normal-
ization are valid65, 66. This data set may also be useful for future
optimization of certain general data analysis parameters, such as,
selection of the most appropriate peptides for protein quantifi-
cation. In this study, we used a simple method to infer protein
abundance44, however, more advanced methods that take into
account which peptides are most robust for quantification
(“quantotypic”67) across the study could be developed based on
our data.

Another comparison that was directly possible in our data set
was that of LLOQ in either SWATH-MS or MS1 mode using XIC
based analysis within the same data files. As previously reported,
we found a clear benefit in sensitivity when extracting quantita-
tive information from SWATH-MS data over MS1 data. This
difference was maintained across all sites where the data was
acquired, and seems to be generalizable at least with respect to the
instrument setup used in this study. It should be stressed that this
effect may be somewhat platform dependent, as mass analyzers
with higher resolving power for MS1 spectra would facilitate
smaller XIC widths, reducing interferences to some degree.

Finally, a further comparison with CPTAC and associated
projects focused on targeted proteomics via SRM is of interest as
it represents the most advanced work on the robustness and
transferability of quantitative proteomics methods to date24, 26, 27.
CPTAC has also published inter-lab studies focused on DDA
analysis. However, these have primarily focused on the repeat-
ability of peptide/protein identifications or the establishment of
quality control metrics7, 10, or on higher level similarity of dif-
ferential expression analysis when different instruments and
quantitative approaches were applied66, but have not addressed
specific comparisons of quantitative metrics such as CV, LLOQ,
linearity, or dynamic range. Our study is conceptually related to
what was achieved by the CPTAC SRM studies although there are
also some major differences. Firstly, the scope of the CPTAC
SRM studies was different and included variables such as sample
preparation, system suitability, and instrumentation from differ-
ent vendors. In the case of our study, the decision to include only
a single instrument type and model was primarily to limit the
number of experimental parameters varied and, secondly, because
at the outset of the project (September 2013) the adoption of
SWATH-type DIA analysis on other platforms was limited. As
such, in our study, the main variable tested was the site of data
acquisition to assess inter-laboratory SWATH data quality and
reproducibility. As we did not evaluate the variance in sample
preparation between sites we cannot make any conclusions on
this topic. However, we would suggest that the conclusions in the
CPTAC analysis are generalizable; i.e., that if samples are pre-
pared at different sites a significant batch effect can be expected.
As such, viable options for future distributed studies would be to
prepare the samples at central facility or to invest significantly in
standardization of sample preparation in combination with the
application of more advanced methods for normalization and
removal of batch effects. Another significant design difference is
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that CPTAC SRM studies were focused on achieving essentially
clinical-grade assays68 for relatively discrete sets of targets. Our
focus was on quantifying large numbers of proteins in a workflow
that might be used either in a discovery mode for hypothesis
generation, or in a verification mode to test large numbers of
protein analytes in large cohorts. Lastly, as CPTAC has been
focused on a relatively discrete set of targets it was possible to
include isotope-labeled standards, which helped to determine
absolute concentrations and to control matrix interference effects,
whereas our study focused on label-free analysis. With these
differences stated, we can suggest that our studies lead to a
conceptually similar conclusion, albeit with different scopes. That
is, using either targeted MS (i.e., SRM) to study discrete panels of
proteins with highly validated assays or using DIA (i.e., SWATH-
MS) to study large numbers of proteins in exploratory/verifica-
tion analyses, we can quantify proteins in a robust and complete
manner.

This study has demonstrated for the first time that large-scale
quantification of several thousand proteins from centrally pre-
pared samples is feasible with reproducible and comparable data
generated across multiple labs. The result of our study, focused on
assessing variation in data acquisition, is paralleled by concurrent
improvements in the robustness of data analysis tools39, methods
for error rate control55, and sample preparation techniques43.
While further work needs to be done in several areas, such as
large-scale sample preparation, long-term instrument robustness,
and batch effect normalization during data analysis, these studies
collectively advance the reproducibility and transparency of
SWATH-MS. As comparative quantitative analysis of a large
number of proteomes becomes accessible42, 46, 69, we can expect
to see research applications where the analysis of large numbers
of samples is a prerequisite. For example, analyses of clinical
material from large patient cohorts42 (e.g., biomarkers, persona-
lized medicine), association of protein abundances to genomic
features using genetic reference collections or wild-type popula-
tions46 (e.g., quantitative trail locus or genome wide association
studies), or large-scale perturbation screens using in vitro model
systems (e.g., drug screens) are now feasible. More broadly, the
data presented here demonstrate a significant advance in the
robustness of large-scale data acquisition in quantitative pro-
teomics, and we expect the results from this study to increase
confidence in SWATH-MS as a reproducible quantification
method in life science research.

Methods
Generation and distribution of a benchmarking sample. HEK293 cells (ATCC—
low passage cells—not verified or mycoplasma tested) were cultured in DMEM
(10% FCS, 50 μg ml−1 penicillin, 50 μg ml−1 streptomycin). HEK293 cells were
selected as they are a common cell line used in molecular biology research with
many published orthogonal data sets. Cell pellets were lysed on ice by using a lysis
buffer containing 8 M urea (EuroBio), 40 mM Tris-base (Sigma-Aldrich), 10 mM
DTT (AppliChem), and complete protease inhibitor cocktail (Roche). The mixture
was sonicated at 4 °C for 5 min using a VialTweeter device (Hielscher-Ultrasound
Technology) at the highest setting and centrifuged at 21,130×g, 4 °C for 1 h to
remove the insoluble material. The supernatant protein mixtures were transferred
and the protein amount was determined with a Bradford assay (Bio-Rad). Then five
volumes of precooled precipitation solution containing 50% acetone, 50% ethanol,
and 0.1% acetic acid were added to the protein mixture and kept at −20 °C over-
night. The mixture was centrifuged at 20,400×g for 40 min. The pellets were further
washed with 100% acetone and 70% ethanol with centrifugation at 20,400×g for 40
min. Aliquots of 2 mg protein mixtures were reduced by 5 mM tris(carboxyethyl)
phosphine (Sigma-Aldrich) and alkylated by 30 mM iodoacetamide (Sigma-
Aldrich). The samples were then digested with sequencing-grade porcine trypsin
(Promega) at a protease/protein ratio of 1:50 overnight at 37 °C in 100 mM
NH4HCO3 (ref. 70). Digests were combined together and purified with Sep-Pak
C18 Vac Cartridge (Waters). The peptide amount was determined by using
Nanodrop ND-1000 (Thermo Scientific). An aliquot of retention time calibration
peptides from an iRT-Kit (Biognosys) was spiked into the sample at a ratio of 1:20
or 1:25 (v/v) to correct relative retention times between acquisitions71.

Thirty heavy labeled synthetic peptides that were previously used in an SRM
study focused on limits of detection in mammalian cells48 were selected. As such,
these peptides are expected to perform well in LC–MS analysis. The MS response
for each peptide was measured. The peptides were ranked by MS response and
assigned to five groups (A–E) to ensure there was a range of responses across in
each group. These peptides groups were diluted into the matrix described above
across a concentration range to create the five different samples to be analyzed
(Fig 1a, Supplementary Tables 1 and 2). Finally, samples were shipped on dry ice to
the 11 sites.

SWATH-MS measurements. Peptide mixtures were separated using reversed
phase nanoLC using either a nanoLC Ultra system or a nanoLC 425 system
(SCIEX). Most sites (9 of 11) used a cHiPLC system (SCIEX) operated in serial
column mode (for detailed acquisition information please see SOP in Supple-
mentary Protocol 1), fitted with two cHiPLC columns (75 µm× 15 cm ChromXP
C18-CL, 3 µm, 300 Å) to give a total column bed length of 30 cm (Site config-
uration details in Supplementary Table 13). Two sites used PicoFrit emitter (New
Objective) packed to 30 cm with Magic C18 AQ 3 µm 200 Å stationary phase.
Peptide samples (2 µL injection) were first loaded on the first cHiPLC column and
washed for 30 min at 0.5 µl min−1 using mobile phase A (2% acetonitrile in 0.1%
formic acid). Then, elution gradients of ~5–30% of mobile phase B (98% acet-
onitrile in 0.1% formic acid) in 120 min were used to elute peptides off the first
column and through the second cHiPLC column. Both columns were maintained
at 35 °C for retention time stability. Similar separations were performed across all
sites. Gradients were allowed to minimally vary from site to site to obtain similar
peptide separations (see Supplementary Table 14 for gradient information).

Eluent from the column was introduced to the MS system using the NanoSpray
Source into a TripleTOF 5600 system with Analyst Software TF 1.6 (SCIEX) and
the variable window acquisition beta patch. The SWATH-MS acquisition methods
were built using the SWATH-MS Acquisition method editor and a pre-defined
variable window width strategy using 64 windows (Supplementary Table 15). The
Q1 mass range interrogated was 400–1200 m/z, and MS2 spectra were collected
from 100 to 1500 m/z with an accumulation time of 45 ms per variable width
SWATH window. A TOF MS scan (250 ms, 400–1250 m/z) was acquired in every
cycle for a total cycle time of ~3.2 s. Nominal resolving power for MS1 and
SWATH-MS2 scans were 30,000 and 15,000 respectively. The collision energy
curve was controlled across all instruments (CE= 0.0625 *m/z − 3) and the
collision energy spread was defined in the variable window table (Supplementary
Table 15). The acquisition order is outlined in the Supplementary Table 16.
SWATH-MS data files (2 out of 231) were excluded by the local operators if there
was an obvious acquisition error.

Pilot phase quality control assessment. SWATH-MS acquisition data from the
pilot study phase were processed using the SWATH® Acquisition MicroApp 2.0 in
PeakView Software 2.2. A previously published proteome library containing mass
spectrometric coordinates for 10,000+ human proteins49 was used for data pro-
cessing. iRT standard peptides (Biognosys) were included in the library for auto-
matic retention time calibration of each different sample set with the ion library
retention times. Peak group detections were filtered at a 1% global FDR and metrics
were compared using Excel (this corresponds to data in Supplementary Fig. 1 only).

Automated analysis of SWATH-MS data. The SWATH-MS data analysis was
performed using OpenSWATH (OpenMS v2.0) essentially as described35 except
that the improved single executable OpenSwathWorkflow was used instead of the
multi-step workflow to perform peak-picking and feature detection and the fol-
lowing parameters were changed: m/z extraction window= 75 ppm, RT extraction
window= 900 s. The spectral library used as input for peptide queries in the
OpenSWATH analysis was a previously published proteome library containing
mass spectrometric coordinates for 10,000+ human proteins built by combining
several hundred DDA analyses of various human cell and tissues types49.

Semi-supervised learning to optimally combine OpenSWATH peptide query
scores into a single discriminant score, and q-value50 estimation to facilitate FDR
control, were performed using an extended version of PyProphet72 (PyProphet-cli
v0.19—https://github.com/PyProphet). PyProphet was run both using the
experiment-wide context (local–global option in PyProphet—q-values are
generated for every peptide query and protein in every sample) and the global
context (global–global option—only one q-value for every peptide query and
protein representing the highest scoring instance over the whole experiment), with
a fixed λ of 0.4. The set of peptide peak groups used for learning the score weights
of OpenSWATH sub-scores to produce a single discriminant score were sampled
with a ratio ≈1/(no. of samples) in the analysis (for aggregated analysis of all sites
0.005, and for analysis of individual sites 0.05). The sets of peak groups detected at
1% FDR and proteins detected at 1% FDR in the global context were used as a filter
to restrict the set of peak groups and proteins in the experiment-wide context. The
filtered table from the experiment-wide context was then filtered at 1% FDR at the
peptide query level. A protein was considered as detected in a given sample if it
passed these consecutive filters (see Supplementary Note 2 for further discussion
on FDR control). The repeatability7 was defined as the intersect divided by the
union between the peptide or proteins detected from two data files computed
pairwise within the site of data collection or across the entire data set.
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Normalization was achieved by equalizing medians at the peak group level. The
normalization coefficients derived from the peak groups in HEK293 matrix were
also used to normalize the peak areas determined by MultiQuant analysis (below)
of the SIS peptides. Protein abundances were inferred by summing the top five
most intense fragment ion peak areas from the top three most intense peak groups
using the aLFQ software57 (v1.33). Where <3 peak groups were detected, the
available peak groups were summed. Coefficients of variation (% CV) were
computed as 100*standard deviation/mean. Hierarchical clustering was performed
using the dist and hclust functions in R (v3.2.2) using log2 transformed protein
abundances and visualized using the R package ape (v3.3). Pearson correlation
coefficients were computed using the R package Hmisc (v3.17) and visualized using
the R package corrplot (v0.73).

Analysis of SWATH-MS data for 30 SIS peptides. The SWATH Acquisition
data obtained from all sites was processed using MultiQuant Software 3.0. The
same quantification method (Supplementary Table 17) was used across all sites and
consisted of three to four fragment ion XICs extracted and summed together to
produce a peptide area. Spectral peak widths for XIC generation were 0.05 for MS2
and 0.02 for MS. Peak integration was done using the MQ4 algorithm. The curve
for each peptide was evaluated and the LLOQ was determined in accordance with
bioanalytical standards49 (<20% CV, S/N> 20, 80–120% accuracy; linear fit with 1/
x weighting). A number of analytical aspects were evaluated, including the
reproducibility of the peptide peak areas, the LLOQ for each peptide, the signal/
noise ratios using the relative noise approach in the MultiQuant Software, and the
reproducibility and accuracy of the concentration.

Data availability. The mass spectrometry proteomics data has been deposited to
the ProteomeXchange Consortium (http://proteomecentral.proteomexchange.org)
via the PRIDE partner repository73 with the data set identifier PXD004886. The
data that support the findings of this study are available from the corresponding
author upon request.
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