115 research outputs found
Temperature suppression of STM-induced desorption of hydrogen on Si(100) surfaces
The temperature dependence of hydrogen (H) desorption from Si(100)
H-terminated surfaces by a scanning tunneling microscope (STM) is reported for
negative sample bias. It is found that the STM induced H desorption rate ()
decreases several orders of magnitude when the substrate temperature is
increased from 300 K to 610 K. This is most noticeable at a bias voltage of -7
V where decreases by a factor of ~200 for a temperature change of 80 K,
whilst it only decreases by a factor of ~3 at -5 V upon the same temperature
change. The experimental data can be explained by desorption due to vibrational
heating by inelastic scattering via a hole resonance. This theory predicts a
weak suppression of desorption with increasing temperature due to a decreasing
vibrational lifetime, and a strong bias dependent suppression due to a
temperature dependent lifetime of the hole resonance.Comment: 5 pages, RevTeX, epsf files. Accepted for surface science letter
STM induced hydrogen desorption via a hole resonance
We report STM-induced desorption of H from Si(100)-H(2) at negative
sample bias. The desorption rate exhibits a power-law dependence on current and
a maximum desorption rate at -7 V. The desorption is explained by vibrational
heating of H due to inelastic scattering of tunneling holes with the Si-H
5 hole resonance. The dependence of desorption rate on current and bias
is analyzed using a novel approach for calculating inelastic scattering, which
includes the effect of the electric field between tip and sample. We show that
the maximum desorption rate at -7 V is due to a maximum fraction of
inelastically scattered electrons at the onset of the field emission regime.Comment: 4 pages, 4 figures. To appear in Phys. Rev. Let
First principles theory of inelastic currents in a scanning tunneling microscope
A first principles theory of inelastic tunneling between a model probe tip
and an atom adsorbed on a surface is presented, extending the elastic tunneling
theory of Tersoff and Hamann. The inelastic current is proportional to the
change in the local density of states at the center of the tip due to the
addition of the adsorbate. We use the theory to investigate the vibrational
heating of an adsorbate below an STM tip. We calculate the desorption rate of H
from Si(100)-H(21) as function of the sample bias and tunnel current,
and find excellent agreement with recent experimental data.Comment: 5 pages, RevTeX, epsf file
Memory properties and charge effect study in Si nanocrystals by scanning capacitance microscopy and spectroscopy
In this letter, isolated Si nanocrystal has been formed by dewetting process with a thin silicon dioxide layer on top. Scanning capacitance microscopy and spectroscopy were used to study the memory properties and charge effect in the Si nanocrystal in ambient temperature. The retention time of trapped charges injected by different direct current (DC) bias were evaluated and compared. By ramp process, strong hysteresis window was observed. The DC spectra curve shift direction and distance was observed differently for quantitative measurements. Holes or electrons can be separately injected into these Si-ncs and the capacitance changes caused by these trapped charges can be easily detected by scanning capacitance microscopy/spectroscopy at the nanometer scale. This study is very useful for nanocrystal charge trap memory application
Towards the fabrication of phosphorus qubits for a silicon quantum computer
The quest to build a quantum computer has been inspired by the recognition of
the formidable computational power such a device could offer. In particular
silicon-based proposals, using the nuclear or electron spin of dopants as
qubits, are attractive due to the long spin relaxation times involved, their
scalability, and the ease of integration with existing silicon technology.
Fabrication of such devices however requires atomic scale manipulation - an
immense technological challenge. We demonstrate that it is possible to
fabricate an atomically-precise linear array of single phosphorus bearing
molecules on a silicon surface with the required dimensions for the fabrication
of a silicon-based quantum computer. We also discuss strategies for the
encapsulation of these phosphorus atoms by subsequent silicon crystal growth.Comment: To Appear in Phys. Rev. B Rapid Comm. 5 pages, 5 color figure
Typical investigational medicinal products follow relatively uniform regulations in 10 European Clinical Research Infrastructures Network (ECRIN) countries
<p>Abstract</p> <p>Background</p> <p>In order to facilitate multinational clinical research, regulatory requirements need to become international and harmonised. The EU introduced the Directive 2001/20/EC in 2004, regulating investigational medicinal products in Europe.</p> <p>Methods</p> <p>We conducted a survey in order to identify the national regulatory requirements for major categories of clinical research in ten European Clinical Research Infrastructures Network (ECRIN) countries-Austria, Denmark, France, Germany, Hungary, Ireland, Italy, Spain, Sweden, and United Kingdom-covering approximately 70% of the EU population. Here we describe the results for regulatory requirements for typical investigational medicinal products, in the ten countries.</p> <p>Results</p> <p>Our results show that the ten countries have fairly harmonised definitions of typical investigational medicinal products. Clinical trials assessing typical investigational medicinal products require authorisation from a national competent authority in each of the countries surveyed. The opinion of the competent authorities is communicated to the trial sponsor within the same timelines, i.e., no more than 60 days, in all ten countries. The authority to which the application has to be sent to in the different countries is not fully harmonised.</p> <p>Conclusion</p> <p>The Directive 2001/20/EC defined the term 'investigational medicinal product' and all regulatory requirements described therein are applicable to investigational medicinal products. Our survey showed, however, that those requirements had been adopted in ten European countries, not for investigational medicinal products overall, but rather a narrower category which we term 'typical' investigational medicinal products. The result is partial EU harmonisation of requirements and a relatively navigable landscape for the sponsor regarding typical investigational medicinal products.</p
- …