The quest to build a quantum computer has been inspired by the recognition of
the formidable computational power such a device could offer. In particular
silicon-based proposals, using the nuclear or electron spin of dopants as
qubits, are attractive due to the long spin relaxation times involved, their
scalability, and the ease of integration with existing silicon technology.
Fabrication of such devices however requires atomic scale manipulation - an
immense technological challenge. We demonstrate that it is possible to
fabricate an atomically-precise linear array of single phosphorus bearing
molecules on a silicon surface with the required dimensions for the fabrication
of a silicon-based quantum computer. We also discuss strategies for the
encapsulation of these phosphorus atoms by subsequent silicon crystal growth.Comment: To Appear in Phys. Rev. B Rapid Comm. 5 pages, 5 color figure