
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

General rights 
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners 
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. 
 

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research. 
• You may not further distribute the material or use it for any profit-making activity or commercial gain 
• You may freely distribute the URL identifying the publication in the public portal  

 
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately 
and investigate your claim. 

   

 

Downloaded from orbit.dtu.dk on: Dec 17, 2017

STM-Induced Hydrogen Desorption via a Hole Resonance

Stokbro, Kurt; Thirstrup, C.; Sakurai, M.; Quaade, Ulrich; Hu, Ben Yu-Kuang; Perez-Murano, F.; Grey,
Francois
Published in:
Physical Review Letters

Link to article, DOI:
10.1103/PhysRevLett.80.2618

Publication date:
1998

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):
Stokbro, K., Thirstrup, C., Sakurai, M., Quaade, U., Hu, B. Y-K., Perez-Murano, F., & Grey, F. (1998). STM-
Induced Hydrogen Desorption via a Hole Resonance. Physical Review Letters, 80(12), 2618-2621. DOI:
10.1103/PhysRevLett.80.2618

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Online Research Database In Technology

https://core.ac.uk/display/13725847?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1103/PhysRevLett.80.2618
http://orbit.dtu.dk/en/publications/stminduced-hydrogen-desorption-via-a-hole-resonance(a8f8b12b-1c9b-4d50-806b-d02df62187fb).html


VOLUME 80, NUMBER 12 P H Y S I C A L R E V I E W L E T T E R S 23 MARCH 1998

STM-Induced Hydrogen Desorption via a Hole Resonance
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We report STM-induced desorption of H from Sis100d-Hs2 3 1d at negative sample bias. The
desorption rate exhibits a power-law dependence on current and a maximum desorption rate at27 V.
The desorption is explained by vibrational heating of H due to inelastic scattering of tunneling holes
with the Si-H 5s hole resonance. The dependence of desorption rate on current and bias is analyzed
using a novel approach for calculating inelastic scattering, which includes the effect of the electric
field between tip and sample. We show that the maximum desorption rate at27 V is due to a
maximum fraction of inelastically scattered electrons at the onset of the field emission regime. [S0031-
9007(98)05616-6]

PACS numbers: 61.16.Ch, 68.10.Jy, 79.20.La, 81.65.Cf

Single atom manipulation with a scanning tunneling mi-
croscope (STM) has been reported for several systems and
a variety of physical mechanisms has been proposed to
account for such manipulation [1,2]. Among the works
relevant for the present Letter we mention single hydro-
gen atom desorption from the Sis100d-Hs2 3 1d surface
[3], and dissociation of single O2 molecules on Pt(111)
[4]. These manipulations were performed at positive
sample bias, and the underlying microscopic mechanism
has been related to vibrational heating by inelastic scatter-
ing of tunneling electrons with an electron resonance on the
sample. There have been theoretical predictions that a re-
lated mechanism may operate at negative sample bias [5],
which involve inelastic scattering of a tunneling hole with
a hole resonance on the sample. However, to our knowl-
edge there has been no experimental confirmation of such
a mechanism, probably because high tunnel currents and
sample biases are needed to obtain high inelastic scatter-
ing rates with low-lying hole resonances (see Fig. 1).

In this Letter, we present evidence for a desorption
mechanism involving a hole resonance, for STM-
induced hydrogen desorption from the monohydride
Sis100d-Hs2 3 1d surface in ultrahigh vacuum [3].
Whereas in previous studies [3,6,7], hydrogen desorption
has been studied at positive sample bias, here we report
hydrogen desorption at negative bias. The desorption
process is modeled by vibrational heating of hydrogen
caused by inelastic scattering of tunneling holes with the
Si-H 5s hole resonance. The inelastic scattering rates are
calculated using a novel method based on first principles
electronic structure theory, and desorption rates obtained
by solving the Pauli master equation for a truncated
harmonic potential well [8]. With this model we obtain
desorption rates as function of tunnel current and sample
bias that are in agreement with the experimental data.
We find a maximum desorption rate at sample bias27 V,
which coincides with the onset of the field emission or
Fowler-Nordheim regime [9,10]. We show that this

results from a competition between polarization of the
hole resonance, which increases the fraction of inelastic
scattered electrons, and domination of Fermi-level contri-
butions to the tunnel current in the field emission regime.

The experiments were performed onn-type Si(100)
(ND  1 3 1018 cm23) samples using a JEOL
JSTM-4000XV microscope at a base pressure of
1 3 10210 torr. Atomic hydrogen was absorbed on the
clean Sis100d-s2 3 1d reconstructed surface to obtain the
monohydrides2 3 1d phase, in a manner identical to pre-
vious reports [7], and W tips were used. The desorption
experiments were carried out by scanning the STM tip
at speed,s, sample bias,Vb, and tunnel current,I, and
subsequently imaging the affected area to determine the
number of Si sites where desorption occurred. Figure 2
shows a typical example of desorption at negative sample
bias of hydrogen along a single dimer row. We first

FIG. 1. (a) Inelastic tunneling of a hole into an adsorbate in-
duced hole resonance with density of states,r0. The higher
barrier for tunneling into the hole resonance compared to tun-
neling into Fermi-level states, means that only a fraction of
the total tunnel current will pass through the hole resonance.
(b) Schematic illustration of relative energy dependent proba-
bilities, rns´d, for inelastic hole tunneling with energy transfer
nh̄v0 to the adsorbate.
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FIG. 2. (a) A single line of desorbed H from the
Sis100d-Hs2 3 1d surface as a result of a line scan at27 V
and 3.0 nA. The picture is obtained at22 V and 0.2 nA,
and bright regions are due to increased density of states of
H-free Si atoms. (b) The experimental corrugation (solid line)
along the line in (a) compared with the theoretical corrugation
of a missing H defect including electric field effects (dashed
line) and without electric field effects (dotted line). Results in
the range27 Å , x , 9 Å are calculated using acs4 3 4d
cell with one missing H atom and outside this range using a
(2 3 1) cell.

measured the dependence of the desorption rate,R, on the
tunnel current for sample biases ofVb  27 and 25 V.
The results are shown in Fig. 3 (inset). For both biases
there is a power-law dependence of the desorption rate
upon current,R  R0sIyIdesda , with exponenta ø 6.
In this equationIdes is the tunnel current that gives
rise to a fixed desorption rateR0. In order to find the
voltage dependence of the desorption rate, we measure
IdessVbd with Vb in the range210 to 24 V, as shown
in Fig. 3. The measurements were obtained by scanning
30 nm along a single dimer row ats  2 nmys, and
Ides is defined as the current that gives rise to desorption
of 50% of the hydrogen along such a scan line, which
corresponds toR0  4 s21.

The main feature of Fig. 3 is that significantly higher
bias and tunnel currents are required at negative bias,
compared to the positive bias case [3]. WhereasIdessVbd
decreases monotonically at positiveVb [3], it displays
a minimum at negativeVb , increasing forVb , 27 V.
Experimentally, the lithographic resolution at negative
bias is comparable to that at positive bias. At the highest

FIG. 3. Current,Ides, as a function of sample bias,Vb , for
constant desorption rateR  4 s21. Circles show experimental
results, and the solid line shows the theoretical result. The
dashed line shows the current as a function of sample bias for
constant electric fieldE  0.8 VyÅ in the tunnel gap. Inset
shows RsId for Vb  27 V (triangles) and25 V (crosses),
and from least-squares fits ofR ~ Ia to the data we obtain
a  5.7 6 0.7 (27 V) and 6.3 6 1.3 (25 V). Lines show
theoretical calculations and have exponentsa  6.4 (27 V)
and7.1 (25 V).

current levels there is a tendency for the tip resolution
to be affected by the lithography process. This limits
the voltage range over whichIdessVbd can be readily
measured, and may explain why no detailed investigation
of desorption at negative sample bias has been made
previously. We note that the behavior ofIdessVbd at
negative sample bias has been confirmed independently
on a separate STM system [11].

At negative sample bias, electrons accelerated across
the tunnel gap impinge on the tip, so the possibility
of direct excitation by collision can be ruled out as a
desorption mechanism. In contrast, at positive sample
bias, direct excitation of the Si-H bond is believed to play
the dominant role forVb . 4 V [3,6]. Shenet al. [3]
have proposed vibrational heating of hydrogen [12] by
tunneling electrons scattering inelastically with the Si-H
6sp electron resonance as a desorption mechanism for
positive sample bias andVb , 4 V. A similar mechanism
can function at negative sample bias, since an electron
tunneling from the sample to the tip may excite the Si-H
5s hole resonance, which upon deexcitation can transfer
energy to the hydrogen atom [5]. This process can be
viewed as inelastic scattering of a tunneling hole with
the Si-H 5s hole resonance, as illustrated in Fig. 1. A
characteristic feature of vibrational heating by inelastic
scattering is a power-law dependence of the desorption
rate on current [13] in agreement with the experimental
observations.

To make a quantitative analysis of the dependence of
the desorption rate on tunnel current and sample bias,
we develop a method for obtaining inelastic scattering
rates from first principles electronic structure calculations.
Since the inelastic scattering rate depends on the tip-sample
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distance,d, while the measured quantities areI and Vb ,
we first calculate the relation betweenI, Vb , and d.
For this purpose we use a high voltage extension of
the work by Tersoff and Hamann [14], that includes
the effect of the electric field between tip and sample
[15]. The tunnel current is obtained from the local den-
sity of states (DOS) of the Sis100d-Hs2 3 1d surface,
rsr, ´, Ed 

P
m jcmsr, Edj2ds´ 2 ´md, at tip positionr,

and wave functionscm for electrons with energý m are
calculated in an external fieldE. The electric field is mod-
eled by a planar electric field outside the surface and its
magnitude determined fromVb andd. The tunnel current
is given by [15]

I  CW

Z eVb

0
je2Rw ks´djrsd 1 Rw, ´, Ed d´ , (1)

where distances are in bohrs, current in amperes, and all
electron energies are relative to the sample Fermi energy,
´F . In this equationks´d 

p
2msft 1 eVb 2 ´dyh̄ is

the wave function inverse decay length,ft  4.5 eV
the work function of the W tip [16],RW  3 a.u. the
atomic radius of W, and the normalization constantCW 
0.007R2

W amperes3 bohr is obtained from a calculation
of a model W tip [15].

We test the method by calculating the STM corruga-
tion across a single missing H defect. The electronic
structure calculations are based on density-functional
theory [17,18] within the generalized-gradient approxima-
tion (GGA) [19] using 20 Ry plane-wave basis sets. The
Sis100d-Hs2 3 1d surface is represented by a 12 layer
(2 3 1) slab, and we use acs4 3 4d slab to calculate
the corrugation of a single missing H defect. Ultrasoft
pseudo-potentials [20] are used for both H and Si. Fig-
ure 2(b) shows the result compared with the measured
corrugation perpendicular to a desorption line. The theo-
retical corrugation compares well with the experimental
data when the electric field between tip and sample is in-
cluded (dashed line) but not otherwise (dotted line).

We next calculate the tunnel current of inelastically
scattered electrons. Electrons may scatter inelastically
due to long-range electrostatic interactions with a vibra-
tional transition dipole moment, or due to local inelastic
scattering with an electronic resonance [21]. Only a local
interaction can cause atomic scale desorption, so in the
following we restrict the analysis to resonance coupling.
The resonance scattering event can be described by a local
polaron model with a linear electron-phonon couplingl,
and we use a harmonic approximation for the Si-H bond
potential with frequencyv0. To calculate the inelastic
current,In, which causes transitions from vibrational level
0 to n, we combine previous models of inelastic-scattering
[5,22] with the Tersoff-Hamann model of STM tunneling
between a surface and a W tip [14,15]. In the limit of a
broad resonance,D ¿ l, v0, we obtain [23]

In  CW n!
Z eVb

n h̄v0

je2Rw ks´djrnsd 1 Rw, ´, Ed d´ ,

(2)

where distances are in a.u. andIn in amperes. We define
a dimensionless parameter,K  pl2rsyD, wherers P

m ds´5s 2 ´md is the average surface DOS around the
resonance energý5s, andD is the resonance width. The
weighted local DOS,

rnsr, ´, Ed  Kn
X
m

fmjk5sjmlj2njcmsr, Edj2ds´ 2 ´md ,

is weighted withsKk5sjml2dn, where j5sl and jml are
the resonance state and sample eigenstates, respectively,
and fm  jk5sjmlj2ysx 1 jk5sjmlj2d is the fraction of
electrons which tunnel from the tip to statem via the
5s resonance. The parameterx determines the frac-
tion of electrons which does not tunnel via the reso-
nance state, and we have estimatedx ø 0.1 s 0.25 3

maxm jk5sjmlj2d. We note that the calculations are quite
insensitive to the value ofx, since fm , 1 for ´m ,
´5s and fm , jk5sjmlj2yx for j´m 2 ´5s j ¿ D, thus
x merely damps contributions from eigenstates not in
resonance.

We next calculate the parameters entering Eq. (2) for
inelastic scattering with the Si-H5s resonance. From
a frozen phonon calculation we obtain̄hv0  0.26 eV.
Using the ground state energy of a free H atom we calcu-
lateEdes  3.36 eV. To findk5sjml we project the elec-
tronic eigenstates of the slab calculation onto the5s wave
function of a Si-H molecule, and the solid line in Fig. 4
shows the partial DOS n5ss´d 

P
m jk5sjmlj2ds´ 2

´md. We find that the5s resonance is centered at´5s 
25.3 eV relative to the Fermi level of ann-type sample
with an average width ofD  0.6 eV. Crosses in Fig. 4
showrss´md ø ns´mdyjk5sjmlj2 from which we estimate
rs ø 1.2 eV21. The electron-phonon coupling is given
by l  ´

0
5s

p
h̄y2Mv0, where M is the hydrogen mass

and ´
0
5s the derivative of´5s with respect to the Si-H

bond length z [5]. Our calculations show that́ 5s

varies almost linearly withz in the range1.25 Å , z ,

2.25 Å with a slope´
0
5s  2.3 6 0.1 eVyÅ, and hence

l ø 0.20 eV.
From the inelastic currents we calculate desorption

rates by solving the Pauli master equation for the tran-
sitions among the various levels of the oscillator [8]. We
include contributions fromI1, I2, andI3 [24], and vibra-
tional relaxations are described by a current independent
relaxation rate,g  1 3 108 s21 [3,25]. We assume that
desorption occurs when the energy of the H atom ex-
ceeds the desorption energyEdes  3.36 eV, correspond-
ing to a truncated harmonic potential well with 13 levels.
The solid lines in Fig. 3 (inset) show the calculated de-
sorption rate as function of tunnel current forVb  25
and27 V. The agreement with the experimental data is
excellent. The desorption rate follows a powerlaw with
exponenta ø 6.5. An analysis of the theoretical calcu-
lation shows that the contribution fromI2 dominates the
desorption rate, and thereforea ø Ny2, whereN  13
is the number of levels in the truncated harmonic poten-
tial well. This contrasts with the low positive bias case,
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FIG. 4. The partial DOS,n5ss´d 
P

m jk5sjmlj2ds´ 2 ´md,
of the 5s wave function of a Si-H molecule. The dotted line
shows the projection onto all Si-H molecular wave functions.
Crosses show values ofn5ss´mdyk5sjmlj2.

Vb , 4 V, whereI1 dominates anda ø 13 [3]. This dif-
ference is due to the different lifetimes of the5s and6sp

resonances. Since the6sp resonance is more short-lived
(D  1 eV), the energy transfer in each inelastic scatter-
ing event is smaller andI1 dominates in this case [23].
Furthermore, electrons with energy,4 eV only sample
the low energy tail of the Si-H6sp resonance, andr1 is
relatively broader thanrn for n . 1; see Fig. 1.

We next calculateIdessVbd and the results are shown in
Fig. 3, and we note that the minimum at27 V is accurately
reproduced by the theoretical calculation. This minimum
does not coincide with the resonance energy´5s , but with
the onset of the field emission regime, as illustrated by
I-V characteristics for this system at a constant field of
0.8 VyÅ (dashed line). In field0.8 VyÅ surface states
are band bent by,1 eV [15] and thereforé 5s ø 6 eV.
Thus, in the rangef26.5 V, 0 Vg the bias dependence of
Ides is mainly determined by the shape of the resonance
wave function. Below26.5 V the bias dependence is
a result of competition between two different effects:
polarization of the hole resonance and increasing Fermi-
level conduction. The electric field polarizes the surface,
displacing wave functions towards the tip. Since the5s

orbital is more polarized than bulk states, its overlap with
the tip state increases relative to other states, and the
fraction of electrons causing double vibrational excitations,
f2  I2yI , increases with electric field, as observed in the
voltage rangef27 V, 26.5 Vg. On the other hand, the
growing tip-sample distance with increasing magnitude of
the negative bias will increase the tunnel barrier of the
5s state relative to states near the Fermi level, thusf2
decreases with tip-sample distance. This effect becomes
dominant at the onset of the field emission regime, where

the conduction of states near the Fermi level is independent
of the tip-sample distance, andf2 starts to decrease when
Vb , 27 V.

In conclusion, we have presented experimental mea-
surements of the voltage and current dependent variation
of the hydrogen desorption rate from the Sis100d-Hs2 3

1d surface at negative bias conditions. Based on a novel
first principles theory of inelastic scattering, we have
shown that the desorption is caused by vibrational heat-
ing of the H atom due to inelastic-scattering with the Si-H
5s hole resonance.
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