72 research outputs found

    The PPARα agonist fenofibrate suppresses B-cell lymphoma in mice by modulating lipid metabolism

    Get PDF
    AbstractObesity is associated with an increased risk for malignant lymphoma development. We used Bcr/Abl transformed B cells to determine the impact of aggressive lymphoma formation on systemic lipid mobilization and turnover. In wild-type mice, tumor size significantly correlated with depletion of white adipose tissues (WAT), resulting in increased serum free fatty acid (FFA) concentrations which promote B-cell proliferation in vitro. Moreover, B-cell tumor development induced hepatic lipid accumulation due to enhanced hepatic fatty acid (FA) uptake and impaired FA oxidation. Serum triglyceride, FFA, phospholipid and cholesterol levels were significantly elevated. Consistently, serum VLDL/LDL-cholesterol and apolipoprotein B levels were drastically increased. These findings suggest that B-cell tumors trigger systemic lipid mobilization from WAT to the liver and increase VLDL/LDL release from the liver to promote tumor growth. Further support for this concept stems from experiments where we used the peroxisome proliferator-activated receptor α (PPARα) agonist and lipid-lowering drug fenofibrate that significantly suppressed tumor growth independent of angiogenesis and inflammation. In addition to WAT depletion, fenofibrate further stimulated FFA uptake by the liver and restored hepatic FA oxidation capacity, thereby accelerating the clearance of lipids released from WAT. Furthermore, fenofibrate blocked hepatic lipid release induced by the tumors. In contrast, lipid utilization in the tumor tissue itself was not increased by fenofibrate which correlates with extremely low expression levels of PPARα in B-cells. Our data show that fenofibrate associated effects on hepatic lipid metabolism and deprivation of serum lipids are capable to suppress B-cell lymphoma growth which may direct novel treatment strategies. This article is part of a Special Issue entitled Lipid Metabolism in Cancer

    Absence of Adiponutrin (PNPLA3) and Monoacylglycerol Lipase Synergistically Increases Weight Gain and Aggravates Steatohepatitis in Mice

    Get PDF
    Altered lipid metabolic pathways including hydrolysis of triglycerides are key players in the pathogenesis of nonalcoholic fatty liver disease (NAFLD). Whether adiponutrin (patatin-like phospholipase domain containing protein-3-PNPLA3) and monoacylglycerol lipase (MGL) synergistically contribute to disease progression remains unclear. We generated double knockout (DKO) mice lacking both Mgl and Pnpla3; DKO mice were compared to Mgl-/- after a challenge by high-fat diet (HFD) for 12 weeks to induce steatosis. Serum biochemistry, liver transaminases as well as histology were analyzed. Fatty acid (FA) profiling was assessed in liver and adipose tissue by gas chromatography. Markers of inflammation and lipid metabolism were analyzed. Bone marrow derived macrophages (BMDMs) were isolated and treated with oleic acid. Combined deficiency of Mgl and Pnpla3 resulted in weight gain on a chow diet; when challenged by HFD, DKO mice showed increased hepatic FA synthesis and diminished beta-oxidation compared to Mgl-/-.DKO mice exhibited more pronounced hepatic steatosis with inflammation and recruitment of immune cells to the liver associated with accumulation of saturated FAs. Primary BMDMs isolated from the DKO mice showed increased inflammatory activities, which could be reversed by oleic acid supplementation. Pnpla3 deficiency aggravates the effects of Mgl deletion on steatosis and inflammation in the liver under HFD challenge

    Plasma bile acids are not associated with energy metabolism in humans

    Get PDF
    Bile acids (BA) have recently been shown to increase energy expenditure in mice, but this concept has not been tested in humans. Therefore, we investigated the relationship between plasma BA levels and energy expenditure in humans. Type 2 diabetic (T2DM) patients (n = 12) and gender, age and BMI-matched healthy controls (n = 12) were studied before and after 8 weeks of treatment with a BA sequestrant. In addition, patients with liver cirrhosis (n = 46) were investigated, since these display elevated plasma BA together with increased energy expenditure. This group was compared to gender-, age- and BMI-matched healthy controls (n = 20). Fasting plasma levels of total BA and individual BA species as well as resting energy expenditure were determined. In response to treatment with the BA sequestrant, plasma deoxycholic acid (DCA) levels decreased in controls (-60%, p &lt;0.05) and T2DM (-32%, p &lt;0.05), while chenodeoxycholic acid (CDCA) decreased in controls only (-33%, p &lt;0.05). Energy expenditure did not differ between T2DM and controls at baseline and, in contrast to plasma BA levels, was unaffected by treatment with the BA sequestrant. Total BA as well as individual BA species did not correlate with energy expenditure at any time throughout the study. Patients with cirrhosis displayed on average an increase in energy expenditure of 18% compared to values predicted by the Harris-Benedict equation, and plasma levels of total BA (up to 12-fold) and individual BA (up to 20-fold) were increased over a wide range. However, neither total nor individual plasma BA levels correlated with energy expenditure. In addition, energy expenditure was identical in patients with a cholestatic versus a non-cholestatic origin of liver disease while plasma total BA levels differed four-fold between the groups. In conclusion, in the various (patho) physiological conditions studied, plasma BA levels were not associated with changes in energy expenditure. Therefore, our data do not support an important role of circulating BA in the control of human energy metabolism.</p

    PAK1 modulates a PPARÎł/NF-ÎșB cascade in intestinal inflammation

    Get PDF
    P21-activated kinases (PAKs) are multifunctional effectors of Rho GTPases with both kinase and scaffolding activity. Here, we investigated the effects of inflammation on PAK1 signaling and its role in colitis-driven carcinogenesis. PAK1 and p-PAK1 (Thr423) were assessed by immunohistochemistry, immunofluorescence, and Western blot. C57BL6/J wildtype mice were treated with a single intraperitoneal TNFα injection. Small intestinal organoids from these mice and from PAK1-KO mice were cultured with TNFα. NF-ÎșB and PPARÎł were analyzed upon PAK1 overexpression and silencing for transcriptional/translational regulation. PAK1 expression and activation was increased on the luminal intestinal epithelial surface in inflammatory bowel disease and colitis-associated cancer. PAK1 was phosphorylated upon treatment with IFNÎł, IL-1ÎČ, and TNFα. In vivo, mice administered with TNFα showed increased p-PAK1 in intestinal villi, which was associated with nuclear p65 and NF-ÎșB activation. p65 nuclear translocation downstream of TNFα was strongly inhibited in PAK1-KO small intestinal organoids. PAK1 overexpression induced a PAK1–p65 interaction as visualized by co-immunoprecipitation, nuclear translocation, and increased NF-ÎșB transactivation, all of which were impeded by kinase-dead PAK1. Moreover, PAK1 overexpression downregulated PPARÎł and mesalamine recovered PPARÎł through PAK1 inhibition. On the other hand PAK1 silencing inhibited NF-ÎșB, which was recovered using BADGE, a PPARÎł antagonist. Altogether these data demonstrate that PAK1 overexpression and activation in inflammation and colitis-associated cancer promote NF-ÎșB activity via suppression of PPARÎł in intestinal epithelial cells

    Monoacylglycerol Lipase Inhibition Protects From Liver Injury in Mouse Models of Sclerosing Cholangitis

    Get PDF
    Background and Aims Monoacylglycerol lipase (MGL) is the last enzymatic step in triglyceride degradation, hydrolyzing monoglycerides into glycerol and fatty acids (FAs) and converting 2-arachidonoylglycerol into arachidonic acid, thus providing ligands for nuclear receptors as key regulators of hepatic bile acid (BA)/lipid metabolism and inflammation. We aimed to explore the role of MGL in the development of cholestatic liver and bile duct injury in mouse models of sclerosing cholangitis, a disease so far lacking effective pharmacological therapy. Approach and Results To this aim we analyzed the effects of 3,5-diethoxycarbonyl-1,4-dihydrocollidine (DDC) feeding to induce sclerosing cholangitis in wild-type (WT) and knockout (MGL(-/-)) mice and tested pharmacological inhibition with JZL184 in the multidrug resistance protein 2 knockout (Mdr2(-/-)) mouse model of sclerosing cholangitis. Cholestatic liver injury and fibrosis were assessed by serum biochemistry, liver histology, gene expression, and western blot characterization of BA and FA synthesis/transport. Moreover, intestinal FAs and fecal microbiome were analyzed. Transfection and silencing were performed in Caco2 cells. MGL(-/-) mice were protected from DDC-induced biliary fibrosis and inflammation with reduced serum liver enzymes and increased FA/BA metabolism and beta-oxidation. Notably, pharmacological (JZL184) inhibition of MGL ameliorated cholestatic injury in DDC-fed WT mice and protected Mdr2(-/-) mice from spontaneous liver injury, with improved liver enzymes, inflammation, and biliary fibrosis. In vitro experiments confirmed that silencing of MGL decreases prostaglandin E-2 accumulation in the intestine and up-regulates peroxisome proliferator-activated receptors alpha and gamma activity, thus reducing inflammation. Conclusions Collectively, our study unravels MGL as a metabolic target, demonstrating that MGL inhibition may be considered as potential therapy for sclerosing cholangitis

    RÎle du récepteur nucléaire FXR dans le métabolisme lipidique

    No full text
    LILLE2-BU Santé-Recherche (593502101) / SudocPARIS-BIUP (751062107) / SudocSudocFranceF

    Identification of rheological constitutive model adapted for powder injection moulding process

    No full text
    International audienceIdentification of rheological constitutive model adapted for powder injection moulding proces
    • 

    corecore