8 research outputs found
Rejection sensitivity as a vulnerability marker for depressive symptom deterioration in men
publishedVersio
Photospheric flows around a quiescent filament
Context: The horizontal photospheric flows below and around a filament are one of the components in the formation and evolution of filaments. Few studies exist because they require multiwalength time sequences at high spatial resolution. Aims: Our objective is to measure the horizontal photospheric flows associated with the evolution and eruption of a filament. Methods: We present observations obtained in 2004 during the international JOP 178 campaign which involved eleven instruments both in space and at ground based observatories. We use TRACE WL, DOT and DST observation to derive flow maps which are then coaligned with intensity images and with the vector magnetic field map obtained with THEMIS/MTR. Results: Several supergranulation cells cross the Polarity Inversion Line (PIL) and can transport magnetic flux through the PIL, in particular parasitic polarities. We present a detailed example of the formation of a secondary magnetic dip at the location of a filament footpoint. Large-scale converging flows, which could exist along the filament channel and contribute to its formation, are not observed. Before the filament's eruptive phase, we observe both parasitic and normal polarities being swept by a continuously diverging horizontal flow located in the filament gap. The disappearance of the filament initiates in this gap. Such purely horizontal motions could lead to destabilization of the filament and could trigger the sudden filament disappearance
Photospheric flows around a quiescent filament at Large and small scale and their effects on filament destabilization
International audienceWe study the influence of large and small scales photospheric motions on the destabilization of an eruptive filament, observed on October 6, 7, and 8, 2004 as part of an international observing campaign (JOP 178). Large-scale horizontal flows are invetigated from a series of MDI/SOHO full-disc Dopplergrams and magnetograms from THEMIS. Small-scale horizontal flows were derived using local correlation tracking on TRACE satellite, Dutch Open Telescope (DOT) and The Dunn Solar telescope (DST) data. The topology of the flow field changed significantly during the filament eruptive phase, suggesting a possible coupling between the surface flow field and the coronal magnetic field. We measured an increase of the shear below the point where the eruption starts and a decrease in shear after the eruption. We conclude that there is probably a link between changes in surface flow and the disappearance of the eruptive filament
PHOTOSPHERIC FLOWS AROUND A QUIESCENT FILAMENT AT LARGE AND SMALL SCALE AND THEIR FFECTS ON FILAMENT DESTABILIZATION
Abstract. We study the influence of large and small scales photospheric motions on the destabilization of an eruptive filament, observed on October 6, 7, and 8, 2004 as part of an international observing campaign (JOP 178). Large-scale horizontal flows are invetigated from a series of MDI/SOHO full-disc Dopplergrams and magnetograms from THEMIS. Small-scale horizontal flows were derived using local correlation tracking on TRACE satellite, Dutch Open Telescope (DOT) and The Dunn Solar telescope (DST) data. The topology of the flow field changed significantly during the filament eruptive phase, suggesting a possible coupling between the surface flow field and the coronal magnetic field. We measured an increase of the shear below the point where the eruption starts and a decrease in shear after the eruption. We conclude that there is probably a link between changes in surface flow and the disappearance of the eruptive filament