38 research outputs found

    Implementation of the TOPKAPI model in South Africa: Initial results from the Liebenbergsvlei catchment

    Get PDF
    Flash floods and droughts are of major concern in Southern Africa. Hydrologists and engineers have to assist decision makers to address the issue of forecasting and monitoring extreme events. For these purposes, hydrological models are useful tools to: ‱ Identify the dominant hydrological processes which influence the water balance and result in conditions of extreme water excess and/or deficit ‱ Assist in generating both short- and long-term hydrological forecasts for use by water resource managers. In this study the physically-based and fully distributed hydrological TOPKAPI model (Liu and Todini, 2002),which has already been successfully applied in several countries in the world (Liu and Todini, 2002; Bartholomes and Todini, 2005; Liu et al., 2005; Martina et al., 2006), is applied in Africa for the first time. This paper contains the main theoretical and numerical components that have been integrated by the authors to model code and presents details of the application of the model in the Liebenbergsvlei catchment (4 625 km2) in South Africa. The physical basis of the equations, the fine-scale representation of the spatial catchment features, the parsimonious parameterisation linked to field/catchment information, the good computation time performance, the modularity of the processes, the ease of use and finally the good results obtained in modelling the river discharges of Liebenbergsvlei catchment, make the TOPKAPI model a promising tool for hydrological modelling of catchments in South Africa.Keywords: hydrology, physically distributed hydrological model, TOPKAPI, South Afric

    Increasing river flows in the Sahel ?

    Get PDF
    Despite the drought observed since 1968 in most of the West African Sahel, runoff and rivers discharges have been increasing in the same region. This trend is related with land use change rather than climate change. This paper aims to describe the regional extension of such a phenomenon and to demonstrate that the increase in runoff is observed from the point scale up to the regional scale. It highlights the opposition of functioning between a Sahelian zone, where the Sahel’s paradox applies, and the Sudanian and Guinean areas, where runoff has been logically decreasing with the rainfall. The current trend is evidenced using experimental runoff plots and discharge data from the local to the regional scales

    Evolution of Surface Hydrology in the Sahelo-Sudanian Strip: An Updated Review

    Get PDF
    In the West African Sahel, two paradoxical hydrological behaviors have occurred during the last five decades. The first paradox was observed during the 1968–1990s ‘Great Drought’ period, during which runoff significantly increased. The second paradox appeared during the subsequent period of rainfall recovery (i.e., since the 1990s), during which the runoff coefficient continued to increase despite the general re-greening of the Sahel. This paper reviews and synthesizes the literature on the drivers of these paradoxical behaviors, focusing on recent works in the West African Sahelo/Sudanian strip, and upscaling the hydrological processes through an analysis of recent data from two representative areas of this region. This paper helps better determine the respective roles played by Land Use/Land Cover Changes (LULCC), the evolution of rainfall intensity and the occurrence of extreme rainfall events in these hydrological paradoxes. Both the literature review and recent data converge in indicating that the first Sahelian hydrological paradox was mostly driven by LULCC, while the second paradox has been caused by both LULCC and climate evolution, mainly the recent increase in rainfall intensity

    Frequency of extreme Sahelian storms tripled since 1982 in satellite observations

    Get PDF
    The hydrological cycle is expected to intensify under global warming, with studies reporting more frequent extreme rain events in many regions of the world, and predicting increases in future flood frequency. Such early, predominantly mid-latitude observations are essential because of shortcomings within climate models in their depiction of convective rainfall. A globally important group of intense storms—mesoscale convective systems (MCSs)—poses a particular challenge, because they organize dynamically on spatial scales that cannot be resolved by conventional climate models. Here, we use 35 years of satellite observations from the West African Sahel to reveal a persistent increase in the frequency of the most intense MCSs. Sahelian storms are some of the most powerful on the planet, and rain gauges in this region have recorded a rise in ‘extreme’ daily rainfall totals. We find that intense MCS frequency is only weakly related to the multidecadal recovery of Sahel annual rainfall, but is highly correlated with global land temperatures. Analysis of trends across Africa reveals that MCS intensification is limited to a narrow band south of the Sahara desert. During this period, wet-season Sahelian temperatures have not risen, ruling out the possibility that rainfall has intensified in response to locally warmer conditions. On the other hand, the meridional temperature gradient spanning the Sahel has increased in recent decades, consistent with anthropogenic forcing driving enhanced Saharan warming. We argue that Saharan warming intensifies convection within Sahelian MCSs through increased wind shear and changes to the Saharan air layer. The meridional gradient is projected to strengthen throughout the twenty-first century, suggesting that the Sahel will experience particularly marked increases in extreme rain. The remarkably rapid intensification of Sahelian MCSs since the 1980s sheds new light on the response of organized tropical convection to global warming, and challenges conventional projections made by general circulation models

    Introduction

    No full text
    DĂ©but de la mousson sur le site de Boubon, prĂšs de Niamey (Niger, 2007). © IRD/L. Descroix Le dernier rapport du Groupe d’experts intergouvernemental sur l’évolution du climat (IPCC, 2014) confirme avec toujours plus de certitude le rĂ©chauffement climatique global causĂ© par l’augmentation des gaz Ă  effet de serre (GES) et ses consĂ©quences probables sur l’environnement et les sociĂ©tĂ©s. En particulier, il alerte Ă  nouveau la communautĂ© internationale sur l’évolution vers un climat plus extrĂȘme..

    Assessing the water balance in the Sahel : Impact of small scale rainfall variability on runoff. Part 2 : Idealized modeling of runoff sensitivity

    No full text
    As in many other semi-arid regions in the world, the Sahelian hydrological environment is characterized by a mosaic of small endoreic catchments with dry soil surface conditions producing mostly Hortonian runoff. Using an SCS-type event based rainfall-runoff model, an idealized modeling experiment of a Sahelian environment is set up to study the sensitivity of runoff to small scale rainfall variability. A set of 548 observed rain events is used to force the hydrological model to study the sensitivity of runoff to the time and space variability of rainfall input. The rainfall time variability sensitivity analysis shows that preserving the event rain depth without representing the main variabilities of the hyetograph intensities can translate into a runoff error of 65% in the worst case. On a virtual mosaic of 1-km(2) catchments covering 10,000 km(2), the simulated runoff shows a high sensitivity to a decrease of the spatial resolution of event rain fields from 1 x 1 km 2 to 100 x 100 km2. For the catchments characterized by low runoff coefficients, which are the most sensitive to rainfall variability, at the coarsest spatial resolution of 100 x 100 km(2), the global runoff computed from the 548 events is underestimated by 50% with respect to the runoff simulated from the 1 x 1 km(2) resolution rain fields. The threshold resolution of 20 km was identified as a characteristic spatial scale, over which the performance of the model rapidly decreases. Looking at the influence of the number of available rain gauges, the effect of spatial aggregation depends on the density of the rain gauge network with lower effect for sparser networks
    corecore