64 research outputs found

    Density Fluctuations in an Electrolyte from Generalized Debye-Hueckel Theory

    Get PDF
    Near-critical thermodynamics in the hard-sphere (1,1) electrolyte is well described, at a classical level, by Debye-Hueckel (DH) theory with (+,-) ion pairing and dipolar-pair-ionic-fluid coupling. But DH-based theories do not address density fluctuations. Here density correlations are obtained by functional differentiation of DH theory generalized to {\it non}-uniform densities of various species. The correlation length ξ\xi diverges universally at low density ρ\rho as (Tρ)1/4(T\rho)^{-1/4} (correcting GMSA theory). When ρ=ρc\rho=\rho_c one has ξξ0+/t1/2\xi\approx\xi_0^+/t^{1/2} as t(TTc)/Tc0+t\equiv(T-T_c)/T_c\to 0+ where the amplitudes ξ0+\xi_0^+ compare informatively with experimental data.Comment: 5 pages, REVTeX, 1 ps figure included with epsf. Minor changes, references added. Accepted for publication in Phys. Rev. Let

    Філософія права в системі наук

    Get PDF
    Thermosensitive amphiphilic block copolymers self-assemble into micelles above their lower critical solution temperature in water, however, the micelles generally display mediocre physical stability. To stabilize such micelles and increase their loading capacity for chemotherapeutic drugs, block copolymers with novel aromatic monomers were synthesized by free radical polymerization of N-(2-benzoyloxypropyl methacrylamide (HPMAm-Bz) or the corresponding naphthoyl analogue (HPMAm-Nt), with N-(2-hydroxypropyl) methacrylamide monolactate, using a polyethylene glycol based macroinitiator. The critical micelle temperatures and critical micelle concentrations decreased with increasing the HPMAm-Bz/Nt content. The micelles of 30-50 nm were prepared by heating the polymer aqueous solutions from 0 to 50 degrees C and were colloidally stable for at least 48 h at pH 7.4 and 37 degrees C. Paclitaxel and docetaxel encapsulation was performed by mixing drug solutions in ethanol with polymer aqueous solutions and heating from 0 to 50 degrees C. The micelles had a drug loading capacity up to 34 wt % for docetaxel, which is among the highest loadings reported for polymeric micelles, with loaded micelle sizes ranging from 60 to 80 nm. The micelles without aromatic groups almost completely released loaded paclitaxel in 10 days, whereas the HPMAm-Bz/Nt containing micelles released 50% of the paclitaxel at the same time, which showed a better retention for the drug of the latter micelles. (1)H solid-state NMR spectroscopy data are compatible with pi-pi stacking between aromatic groups. The empty micelles demonstrated good cytocompatibility, and paclitaxel-loaded micelles showed high cytotoxicity to tumor cells. In conclusion, the pi-pi stacking effect introduced by aromatic groups increases the stability and loading capacity of polymeric micelles

    The Missing Stakeholder Group: Why Patients Should be Involved in Health Economic Modelling

    Get PDF
    Evaluations of healthcare interventions, e.g. new drugs or other new treatment strategies, commonly include a cost-effectiveness analysis (CEA) that is based on the application of health economic (HE) models. As end users, patients are important stakeholders regarding the outcomes of CEAs, yet their knowledge of HE model development and application, or their involvement therein, is absent. This paper considers possible benefits and risks of patient involvement in HE model development and application for modellers and patients. An exploratory review of the literature has been performed on stakeholder-involved modelling in various disciplines. In addition, Dutch patient experts have been interviewed about their experience in, and opinion about, the application of HE models. Patients have little to no knowledge of HE models and are seldom involved in HE model development and application. Benefits of becoming involved would include a greater understanding and possible acceptance by patients of HE model application, improved model validation, and a more direct infusion of patient expertise. Risks would include patient bias and increased costs of modelling. Patient involvement in HE modelling seems to carry several benefits as well as risks. We claim that the benefits may outweigh the risks and that patients should become involved

    A review of system integration and current integrity monitoring methods for positioning in intelligent transport systems

    Get PDF
    Applications of intelligent transportation systems are continuously increasing. Since positioning is a key component in these systems, it is essential to ensure its reliability and robustness, and monitor its integrity so that the required levels of positioning accuracy, integrity, continuity and availability can be maintained. In challenging environments, such as urban areas, a single navigation system is often difficult to fulfil the positioning requirements. Therefore, integrating different navigation sensors becomes intrinsic, which may include the global navigation satellite systems, the inertial navigation systems, the odometers and the light detection and ranging sensors. To bind the positioning errors within a pre-defined integrity risk, the integrity monitoring is an essential step in the positioning service, which needs to be fulfilled for integrated vehicular navigation systems used in intelligent transportation systems. Developing such innovative integrity monitoring techniques requires knowledge of many relevant aspects including the structure, positioning methodology and different errors affecting the positioning solution of the individual and integrated systems. Moreover, knowledge is needed for the current mitigation techniques of these errors, for possible fault detection and exclusion algorithms and for computation of protection levels. This paper provides an overview and discussion of these aspects with a focus on intelligent transportation systems

    Efficiency of stress-adaptive traits chlorophyll fluorescence and membrane thermo- stability in wheat under high temperature

    Get PDF
    Despite developments in targeted gene sequencing and whole-genome analysis techniques, the robust detection of all genetic variation, including structural variants, in and around genes of interest and in an allele-specific manner remains a challenge. Here we present targeted locus amplification (TLA), a strategy to selectively amplify and sequence entire genes on the basis of the crosslinking of physically proximal sequences. We show that, unlike other targeted re-sequencing methods, TLA works without detailed prior locus information, as one or a few primer pairs are sufficient for sequencing tens to hundreds of kilobases of surrounding DNA. This enables robust detection of single nucleotide variants, structural variants and gene fusions in clinically relevant genes, including BRCA1 and BRCA2, and enables haplotyping. We show that TLA can also be used to uncover insertion sites and sequences of integrated transgenes and viruses. TLA therefore promises to be a useful method in genetic research and diagnostics when comprehensive or allele-specific genetic information is needed

    Heritability estimates for 361 blood metabolites across 40 genome-wide association studies

    Get PDF
    Metabolomics examines the small molecules involved in cellular metabolism. Approximately 50% of total phenotypic differences in metabolite levels is due to genetic variance, but heritability estimates differ across metabolite classes. We perform a review of all genome-wide association and (exome-) sequencing studies published between November 2008 and October 2018, and identify >800 class-specific metabolite loci associated with metabolite levels. In a twin-family cohort (N = 5117), these metabolite loci are leveraged to simultaneously estimate total heritability (h2 total), and the proportion of heritability captured by known metabolite loci (h2 Metabolite-hits) for 309 lipids and

    Inflammatory biomarkers in Alzheimer's disease plasma

    Get PDF
    Introduction: Plasma biomarkers for Alzheimer's disease (AD) diagnosis/stratification are a \u201cHoly Grail\u201d of AD research and intensively sought; however, there are no well-established plasma markers. Methods: A hypothesis-led plasma biomarker search was conducted in the context of international multicenter studies. The discovery phase measured 53 inflammatory proteins in elderly control (CTL; 259), mild cognitive impairment (MCI; 199), and AD (262) subjects from AddNeuroMed. Results: Ten analytes showed significant intergroup differences. Logistic regression identified five (FB, FH, sCR1, MCP-1, eotaxin-1) that, age/APO\u3b54 adjusted, optimally differentiated AD and CTL (AUC: 0.79), and three (sCR1, MCP-1, eotaxin-1) that optimally differentiated AD and MCI (AUC: 0.74). These models replicated in an independent cohort (EMIF; AUC 0.81 and 0.67). Two analytes (FB, FH) plus age predicted MCI progression to AD (AUC: 0.71). Discussion: Plasma markers of inflammation and complement dysregulation support diagnosis and outcome prediction in AD and MCI. Further replication is needed before clinical translation

    Autoantibodies against type I IFNs in patients with life-threatening COVID-19

    Get PDF
    Interindividual clinical variability in the course of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection is vast. We report that at least 101 of 987 patients with life-threatening coronavirus disease 2019 (COVID-19) pneumonia had neutralizing immunoglobulin G (IgG) autoantibodies (auto-Abs) against interferon-w (IFN-w) (13 patients), against the 13 types of IFN-a (36), or against both (52) at the onset of critical disease; a few also had auto-Abs against the other three type I IFNs. The auto-Abs neutralize the ability of the corresponding type I IFNs to block SARS-CoV-2 infection in vitro. These auto-Abs were not found in 663 individuals with asymptomatic or mild SARS-CoV-2 infection and were present in only 4 of 1227 healthy individuals. Patients with auto-Abs were aged 25 to 87 years and 95 of the 101 were men. A B cell autoimmune phenocopy of inborn errors of type I IFN immunity accounts for life-threatening COVID-19 pneumonia in at least 2.6% of women and 12.5% of men

    Detection and localization of early- and late-stage cancers using platelet RNA

    Get PDF
    Cancer patients benefit from early tumor detection since treatment outcomes are more favorable for less advanced cancers. Platelets are involved in cancer progression and are considered a promising biosource for cancer detection, as they alter their RNA content upon local and systemic cues. We show that tumor-educated platelet (TEP) RNA-based blood tests enable the detection of 18 cancer types. With 99% specificity in asymptomatic controls, thromboSeq correctly detected the presence of cancer in two-thirds of 1,096 blood samples from stage I–IV cancer patients and in half of 352 stage I–III tumors. Symptomatic controls, including inflammatory and cardiovascular diseases, and benign tumors had increased false-positive test results with an average specificity of 78%. Moreover, thromboSeq determined the tumor site of origin in five different tumor types correctly in over 80% of the cancer patients. These results highlight the potential properties of TEP-derived RNA panels to supplement current approaches for blood-based cancer screening
    corecore