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Abstract: Applications of Intelligent Transportation Systems (ITS) are in continuous increase. Since positioning is a key 
component in these systems, it is essential to ensure its reliability and robustness and to monitor its integrity so that the 
required levels of positioning accuracy, integrity, continuity and availability can be maintained. In challenging environments, 
such as urban areas, a single navigation system is often difficult to fulfil the positioning requirements. Therefore, integrating 
different navigation sensors becomes intrinsic, which may include the Global Navigation Satellite Systems, the Inertial 
Navigation Systems, the odometers and the Light Detection and Ranging (LiDAR) sensors. To bound the positioning errors 
within a pre-defined integrity risk, the integrity monitoring (IM) is an essential step in the positioning service, which needs 
to be fulfilled for integrated vehicular navigation systems used in ITS. Developing such innovative IM techniques requires 
knowledge of many relevant aspects including the structure, positioning methodology, and different errors affecting the 
positioning solution of the individual and integrated systems. Moreover, knowledge is needed for the current mitigation 
techniques of these errors, for possible Fault Detection and Exclusion algorithms, and for computation of protection levels. 
This paper provides an overview and discussion of these aspects with a focus on ITS. 
 

1. Introduction 

The development and spread of many ITS applications 

necessitate the use of effective Integrity Monitoring (IM) 

algorithms of positioning as a crucial component in these 

systems. Generally, ITS applications are classified into two 

categories; safety-of-life applications and liability-critical 

applications. If the undetected errors in navigation can cause 

life threat, the corresponding application is classified as 

safety-of-life. Examples are the emergency services 

management, collision alert, and Advanced Driver-

Assistance Systems (ADAS). On the other hand, if the 

undetected positioning errors can lead to undesirable 

economic and legal actions, the corresponding application is 

classified as liability-critical, such as the Electronic Toll 

Collection (ETC) and the Pay-Per-Use Insurance (PPUI) [1, 

2]. 

The availability of redundant GNSS observations has 

enabled positioning IM for applications in open-sky 

environments, such as in aviation. However, GNSS so far, 

even with the presence of multiple constellations, cannot 

provide the same level of IM in ITS applications, especially 

in dense urban environments. The main reasons are the 

blockage of GNSS signals by surrounding buildings and 

obstructions, and the presence of the No-Line of Sight (NLOS) 

signals and multipath interference as shown in Fig. 1. The 

NLOS occurs when the signals along the Line of Sight (LOS) 

are blocked but are received through reflected paths. The 

multipath interference occurs when both reflected and direct 

LOS signals are received. The effect of NLOS and multipath 

can cause significant positional errors, in particular when 

using pseudorange code observations if these signals are not 

eliminated or mitigated before deriving positional solutions. 

 

Fig. 1.  Signal scenarios in urban environments including 

LOS, NLOS, multipath, and blocked signals 

 

To mitigate the NLOS effects, some studies proposed 

the use of 3D maps in urban areas to detect the NLOS signals 

by identifying the visible and blocked signals [3-5]. Other 

studies proposed the shadow-matching technique to estimate 

the user location by comparing the signal availability 

determined from the receiver and the signal predictions 

determined from the 3D maps [6, 7]. In the same context, the 

integration of GNSS with a fish-eye camera, to distinguish 

the visible satellites from the hidden ones, was presented for 

example in [8, 9]. In a different approach, [10] presented a 

method to detect NLOS signals by using dual-polarization 

antennas based on the carrier-to-noise ratio (C/N0) 

information. In addition, a consistency check technique was 

adopted in [11, 12] to exclude the NLOS signals. Height 

aiding and C/N0 weighting were investigated in [11] to 

improve positioning. A vector tracking technique for NLOS 

detection was proposed in [13]. Additionally, a number of 

studies focused on the antenna and receiver design to mitigate 

the multipath interference effect [14, 15]. Other studies 

investigated the use of weighting models considering the 

elevation angles and the C/N0 [16, 17]. 
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In the dense urban conditions, GNSS frequently 

experience an outage due to observing an insufficient number 

of observations under bad measurement conditions. 

Therefore, to deliver continuous positioning solutions, GNSS 

is typically supported by other navigation systems such as the 

INS. In vehicular navigation, and due to cost restrictions, the 

low-cost Micro-Electro-Mechanical System (MEMS) sensors 

are often used in the INS. In addition, the odometer sensors 

can be integrated with GNSS and INS to improve the 

positioning performance as they can provide the scalar 

vehicular speed, which is transformed to a velocity vector 

using the attitude derived from the INS. Such velocities can 

be integrated in time to give positioning change. The 

advantage of using self-contained systems, such as MEMS 

INS and odometer sensors, is that they are independent of the 

multipath and NLOS errors, light in weight, have low-cost 

and low-power consumption. Their main drawback, however, 

is the significant increase of the biases with time if kept 

unaided by another system [18]. 

Another navigation system that is used in ITS 

applications is the automotive LiDAR sensor. It is becoming 

a popular positioning system, in particular for autonomous 

systems. In dense urban environments, when GNSS suffers 

from signal blockage and multipath, LiDAR can bridge 

positioning by extracting enough features from the 

surrounding environment [19]. Positional differences can 

then be derived by matching different scans. On the other 

hand, in the open-sky areas, which are favourable for GNSS 

with the presence of a good number of observations, LiDAR 

may struggle due to the lack of features in its range, which 

may result in failed extraction or matching processes. 

Therefore, LiDAR and GNSS can complement each other and 

provide INS and odometer sensors with continuous 

corrections. 

To ensure positioning reliability, its integrity should 

be monitored. Integrity refers to the level of trust in the 

navigation system. Integrity has two tasks, the first is to detect 

and exclude system faults and the second is to check that the 

Positional Error (PE) does not exceed a threshold, called the 

Alert Limit (AL). If this happens, it should provide a warning 

to the user within a specified time called the Time to Alert 

(TTA). The probability of Hazardous Misleading Information 

(HMI) should be taken into consideration, which is the 

probability of having a PE larger than the AL without raising 

an alert. It is selected according to the application at hand. 

Since positioning errors are not known in practice, the 

Protection Levels (PLs) are computed, which statistically 

defines the largest PE that may affect the position output 

without raising an alert, with a probability smaller than or 

equal to the permissible probability of HMI.  

Over the past couple of decades, some studies 

proposed IM schemes for aviation. However, similar schemes 

that can be used for land applications of ITS to maintain the 

required levels of positioning accuracy, integrity, continuity 

and availability, are lacking and some groups are currently 

working on its development. In addition, IM algorithms for 

the integrated positioning systems are limited, and mostly 

only focus on the fault detection step. The integrity 

algorithms, which are suitable for ITS applications, will be 

reviewed in this article, in addition to discussing their 

limitations and the development needed. 

This contribution gives an overview of the possible 

integrations of the different navigation systems, in addition to 

the current IM approaches, that are relevant to ITS. The paper 

is organized as follows: Section 2 briefly introduces the 

different navigation systems that can be used in ITS prior to 

delving into the integration process among them. Section 3 

gives an overview of the integration process of these 

navigation systems and the algorithms needed to derive the 

integrated vehicular position. Subsequently, Sections 4 and 5 

discuss the integrity concept, the different navigation 

parameters needed for a successful integrity process, the 

strategies used for IM, together with the current integrity 

algorithms relevant to ITS applications. 

2. Navigation Systems  

In this section, a brief description of the positioning 

systems used in ITS is given. Then, the main characteristics 

and vulnerabilities of each system will be overviewed. 

2.1 GNSS 

GNSS provides absolute positioning, where the code 

and phase measurement equations can be formulated as [20]: 

𝑝 = 𝐺𝑟 + 𝑐(𝑑𝑡𝑟 − 𝑑𝑡𝑠) + 𝑇 + 𝐼 + 𝑐(𝑑𝑟 − 𝑑𝑠) + 𝜉𝑟
𝑠 + 𝜀  (1) 

𝐿 = 𝐺𝑟 + 𝑐(𝑑𝑡𝑟 − 𝑑𝑡𝑠) + 𝑇 + 𝜆(𝑁 + 𝑃𝑊) − 𝐼 

    +𝑐(𝛿𝑟 − 𝛿𝑠)  + 𝛾𝑟
𝑠 + 𝜖                                                         (2) 

where 𝑝 and 𝐿  are the pseudorange code and carrier-phase 

measurements, respectively. 𝐺𝑟  is the geometric range and 𝑐 

is the speed of light. 𝑑𝑡𝑟 and 𝑑𝑡𝑠 denote the receiver and the 

satellite clock offsets, respectively. 𝜆  is the carrier 

wavelength. 𝑇  and 𝐼  represent the troposphere and 

ionosphere delays. 𝑑𝑟  and 𝑑𝑠  are the receiver and satellite 

code biases, respectively. 𝛿𝑟 and 𝛿𝑠  are the receiver and 

satellite phase biases. 𝜉𝑟
𝑠  and 𝛾𝑟

𝑠  are corrections applied to 

code and phase measurements, correspondingly, due to the 

Phase Center Offsets (PCOs) and Phase Center Variations 

(PCVs). 𝜀  and 𝜖  are the code and phase noise, including 

multipath. 𝑁  is the carrier-phase ambiguity and 𝑃𝑊  is the 

phase wind-up correction. The different GNSS algorithms 

that can be used in ITS, such as Real-Time Kinematic (RTK) 

and Precise Point Positioning (PPP) are reviewed extensively 

in the literature [20, 21]. The GNSS vulnerabilities that need 

to be included in the IM threat model in ITS applications are 

described in [22] and will be later mentioned in Table 1. 

2.2 Odometer 

Odometers measure the rotation of the vehicle’s wheel, 

which can be used continuously to calculate the vehicle’s 

speed and travelled distance. The odometer speed (𝑣𝑜𝑑) is 

proportional to the frequency of the sensor signal (𝑓𝑠), and 

can be calculated as [23]: 

                            𝑣𝑜𝑑 =
𝑂𝑣

𝑁𝑡

 𝑓𝑠 = 
2𝜋 𝑟𝑣
𝑁𝑡

 𝑓𝑠                               (3) 

where 𝑂𝑣  is the wheel’s circumference, 𝑟𝑣  is the wheel’s 

radius, and 𝑁𝑡 is the number of teeth on the wheel. 

The use of odometers in navigation is based on the 

assumption that the wheel’s revolutions can be converted to 

linear distance. However, some errors can affect the accuracy 

of this conversion [24-26]. These errors are summarized in 

the last part of this section in Table 1. 

2.3 INS 

An INS is a dead reckoning relative-positioning 

system that provides position changes with time. It consists 
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of accelerometers and gyroscopes, which constitute the 

Inertial Sensor Assembly (ISA). The ISA with the related 

electronics comprises the Inertial Measurement Unit (IMU). 

The IMU with a computer, applying the mechanization and 

filtering algorithms, constitute the INS which can provide 

continuous navigational solutions. The errors affecting the 

INS navigation process were extensively described in the 

literature [18, 27-30]. These error sources are summarized in 

Table 1, and generally, they are classified into two groups; 

systematic errors and random errors. The random part is 

modelled by stochastic models employing the first-order 

Gauss-Markov (GM), random-walk, and autoregressive 

processes [31]. In most GNSS/INS integrations using a 

Kalman Filter, the stochastic errors are modelled with a first-

order GM process [32, 33], which models a correlation that 

decays with time using a constant time length. The constant 

time is determined as the maximum time until reaching an 

insignificant autocorrelation determined from the 

autocorrelation analysis. 

The integration between navigation systems in ITS 

applications requires understanding their different coordinate 

systems (frames) and their relationship. Basically, four 

frames are involved in the navigation process, namely; the 

Earth Centered Earth Fixed (ECEF) frame, the Earth 

Centered Inertial (ECI) frame, the local-level frame (l-frame) 

and the body frame (b-frame). The detailed description of 

each system and the transformation among these systems can 

be found for instance in [30, 34]. 

The IMU outputs come from the gyroscopes and 

accelerometers. The gyroscopes give a vector of rotation rates, 

which is interpreted as the rotation of the b-frame with respect 

to the ECI-frame as resolved in the b-frame. The 

accelerometers give the vector representing the specific 

forces in the three-body axes [18]. The mechanization process 

converts these IMU outputs to attitude, velocity and position 

information. For ITS applications, the output is often given in 

the l-frame. We thus consider the l-frame mechanization 

process in this paper. The mechanization process depends on 

the available aiding sources. For ITS applications, odometer 

sensors can aid the velocity continuously, and hence, the 

mechanization algorithm can be simplified. The process can 

be more accurate after eliminating several error sources in the 

low-cost IMU mechanization. This simple algorithm can be 

represented as [30, 35]: 

𝜑𝑘 = 𝜑𝑘−1 +
𝑣𝑛

𝑘

𝑅𝑀 + ℎ𝑘
∆𝑡 

𝜆𝑘 = 𝜆𝑘−1 +
𝑣𝑒

𝑘

(𝑅𝑁 + ℎ𝑘) 𝑐𝑜𝑠 𝜑𝑘
∆𝑡 

ℎ𝑘 = ℎ𝑘−1 + 𝑣𝑢
𝑘∆𝑡 

𝑣𝑒
𝑘 = 𝑣𝑜𝑑

𝑘 𝑠𝑖𝑛 𝐴𝑘 𝑐𝑜𝑠 𝑝𝑘 

                                 𝑣𝑛
𝑘 = 𝑣𝑜𝑑

𝑘 𝑐𝑜𝑠 𝐴𝑘 𝑐𝑜𝑠 𝑝𝑘                           (4) 

𝑣𝑢
𝑘 = 𝑣𝑜𝑑

𝑘 𝑠𝑖𝑛 𝑝𝑘 

𝑝𝑘 = 𝑠𝑖𝑛−1 (
𝑓𝑦

𝑘 − 𝑎𝑜𝑑
𝑘

𝑔
) 

𝑟𝑘 = −𝑠𝑖𝑛−1 (
𝑓𝑥

𝑘 + 𝑣𝑜𝑑
𝑘 𝜔𝑧

𝑘

𝑔 𝑐𝑜𝑠 𝑝𝑘
) 

𝐴𝑘 = 𝐴𝑘−1 − 𝜔𝑧
𝑘∆𝑡 + 𝜔𝑒 𝑠𝑖𝑛 𝜑𝑘−1 ∆𝑡 +

𝑣𝑒
𝑘−1 𝑡𝑎𝑛 𝜑𝑘−1

𝑅𝑁 + ℎ𝑘−1
∆𝑡 

where ∆𝑡 is the time interval from epoch 𝑘 − 1 to epoch 𝑘, 

shown in the superscript of the symbols. 𝜔𝑧  is the rotation 

rate measured by the vertically aligned gyroscope. 𝑓𝑥 and 𝑓𝑦 

denote the specific forces obtained from the transversal and 

forward accelerometers, respectively. 𝑣𝑒 , 𝑣𝑛  and 𝑣𝑢  are the 

velocities in the local east, north and up directions. 𝜑, 𝜆 and 

ℎ denote the latitude, longitude and ellipsoidal height of the 

point, which are next transformed to the l-frame for 

consistency of the output. 𝑝, 𝑟 and 𝐴 are the pitch, roll and 

azimuth angles. 𝑣𝑜𝑑  and 𝑎𝑜𝑑 are the velocity and acceleration 

obtained from the odometer, and 𝜔𝑒  is the Earth’s rotation 

about its spin axis, which is taken approximately 15.041 

degrees/hour [36]. 𝑅𝑀 and 𝑅𝑁 denote the radii of curvature in 

the meridian and prime vertical planes, respectively [37]. 𝑔 

denotes the gravity acceleration which can be computed as 

described in [38]. The rotation rates and specific forces 

should be corrected from the biases and scale factors before 

entering the mechanization process. To simplify the azimuth 

calculation, the vertical gyroscope is assumed aligned with 

the vertical axis of the l-frame. This assumption agrees with 

the actual situation in ITS applications.  

2.4 Automotive LiDAR 

Automotive LiDAR sensors use the simple Time-of-

Flight (ToF) distance-measuring principle by measuring the 

signal travel time ∆𝑇 (go and return) and compute the range 

by multiplying it by the signal speed, such that  𝑅 = 𝑐 ∆𝑇/2. 

Unlike the RAdio Detection And Ranging (RADAR) system 

which uses microwaves, LiDAR uses ultra-violet or infrared 

beams within the visible light spectrum [39]. There are 

different LiDAR systems available for environment 

perception [40]. However, few systems can be used with 

vehicles in the different ITS applications. These systems 

comprise one or more light emitters (TX) in addition to one 

or more reflected light detectors (RX) to provide coverage for 

the required Field-of-View (FoV) and a large number of 

points in each frame (scan). LiDAR systems generate a large 

amount of data which can reach several GBits per second. In 

ITS applications, these data should be transferred to an 

Electronic Computing Unit (ECU) in real time. This is a 

challenging research task. The amount of data depends on the 

required range resolution, the number of frames per second, 

the FoV frame size and the laser Pulse Repetition Frequency 

(PRF). Additional influencing factors are the number of 

Avalanche Photodiodes (APD) elements and Analogue-to-

Digital Converters (ADC) sampling frequency [41]. 

Automotive LiDAR systems can work as aiding 

systems when being integrated with INS. This integration can 

provide navigational solutions, and it mainly depends on scan 

matching, which can be classified into three main categories, 

namely; the point-based, the feature-based, and the 

mathematical property-based scan matching. The point-based 

scan matching depends on the direct searching and matching 

of the corresponding points in consecutive frames, using the 

Iterative Closest Point (ICP) algorithm [42, 43] and its 

derivatives. The feature-based scan matching depends on 

matching features from consecutive frames to get the 

positional change between these frames. The features used in 

this category are lines [44-46], corners [47], curbs [48], 

curvatures [49] and lane markers [50]. The most commonly 

used method is the line-based scan matching because of the 

frequent appearance of the lines in urban environments, and 
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the computation efficiency of this method. The mathematical 

property-based scan matching can be based on the use of 

cross-correlation [51], histograms [52], normal distribution 

transforms [53] or Hough transformations [54]. Another 

approach for the localization using LiDAR data is 

Simultaneous Localization and Mapping (SLAM). This 

approach is widely used in the robotics field, and it employs 

digital maps in the localization process [55, 56].  

In this article, the line-based scan matching is 

reviewed. The basic idea of this type of scan matching 

follows the definition of normal points in two consecutive 

frames. The normal point can be defined as the intersection 

between the extracted line and the perpendicular line from the 

used LiDAR equipment to this extracted line. This point can 

be characterized by two parameters; the polar range 𝜌 and the 

polar angle 𝛼 . The change of the location of this point 

between two frames can be used to calculate the change in 

position and heading between these frames. Fig. 2 shows this 

process, where frames 𝑖  and 𝑗  are considered. In a 2D 

representation, 𝑋𝑖  and 𝑌𝑖  represent the axes of the i-frame, 

whereas 𝑋𝑗 and 𝑌𝑗 represent the axes of the j-frame. 𝜌𝑖 and 𝜌𝑗 

are the polar ranges of the normal points of those frames, 

respectively, and 𝛼𝑖 and 𝛼𝑗 are the polar angles of the normal 

points of the i-frame and j-frame. ∆𝑥𝑖  and ∆𝑦𝑖  refer to the 

displacements between the two scans, resolved in the i-frame, 

in the 𝑋𝑖 and 𝑌𝑖 directions. The term ∆𝐴 denotes the heading 

change between the two scans. 

 

 

Fig. 2.  Normal point concept in the line-based scan 

matching  

 

From Fig. 2, noting the coordinates of the center of the 

j-frame (∆𝑥𝑖 , ∆𝑦𝑖 ), its polar range 𝜌𝑗 can be calculated as 

follows: 

                     𝜌𝑗 = 𝜌𝑖 − ∆𝑥𝑖 𝑐𝑜𝑠 𝛼𝑖 − ∆𝑦𝑖 𝑠𝑖𝑛 𝛼𝑖                     (5) 

and thus, the difference between the two polar ranges denoted 

as ∆𝜌𝐿 , can be obtained as: 

              ∆𝜌𝐿 = 𝜌𝑖 − 𝜌𝑗 = ∆𝑥𝑖 𝑐𝑜𝑠 𝛼𝑖 + ∆𝑦𝑖 𝑠𝑖𝑛 𝛼𝑖               (6) 

In addition, the heading change can be calculated as: 

                                      ∆𝐴𝐿 = 𝛼𝑖 − 𝛼𝑗                                       (7) 

Based on these relations, the algorithm can be divided 

into three main steps; line extraction, line matching and 

computation of the relative navigational solution. In the first 

step, the Modified Incremental Split and Merge (MISM) 

algorithm can be applied for line detection, as described in 

[46]. In the second step, a search is conducted to find a match 

between extracted lines in two scans. This process can be 

achieved by predicting the polar range and polar angle of the 

normal point in the next scan, using the change in position 

and heading obtained from INS. Then, the prediction 

Variance-Covariance (VC) matrix is calculated and the 

search process is performed looking for the normal point in 

the current scan as described in [57]. In the third and final 

step, the relative navigational solution is computed. For 𝑢 

number of matched lines, the mathematical relationship 

joining the polar parameters and the relative navigational 

solution can be expressed as: 

        

[
 
 
 
 
 
 
 
 
𝜌𝑖1

− 𝜌𝑗1
𝜌𝑖2

− 𝜌𝑗2

⋮
𝜌𝑖𝑢

− 𝜌𝑗𝑢
𝛼𝑖1

− 𝛼𝑗1
𝛼𝑖2

− 𝛼𝑗2

⋮
𝛼𝑖𝑢

− 𝛼𝑗𝑢]
 
 
 
 
 
 
 
 

=

[
 
 
 
 
 
 
 
𝑐𝑜𝑠 𝛼𝑖1

𝑠𝑖𝑛 𝛼𝑖1
0

𝑐𝑜𝑠 𝛼𝑖2
𝑠𝑖𝑛 𝛼𝑖2

0

⋮ ⋮ ⋮
𝑐𝑜𝑠 𝛼𝑖𝑢

𝑠𝑖𝑛 𝛼𝑖𝑢
0

0 0 1
0 0 1
⋮ ⋮ ⋮
0 0 1]

 
 
 
 
 
 
 

[

∆𝑥𝑖

∆𝑦𝑖

∆𝐴𝑖

] + 𝑒       (8) 

which takes the parametric form, and thus, the least-squares 

(LS) estimation of the relative navigational solution with 

respect to the initial frame can be estimated. At least two non-

collinear lines are required to calculate ∆𝑥𝑖  and ∆𝑦𝑖 , while 

one line is enough to calculate ∆𝐴𝑖. 

Having now briefly reviewed the basic principles of 

the three navigation systems that can be used in ITS, namely; 

GNSS, Low-cost INS/odometers, and LiDAR, Table 1 

summarizes the main characteristics of each one. As the 

outputs of the IMUs and odometers are processed together in 

the mechanization process to derive navigational solutions, 

they will be treated as one system here. The GNSS 

vulnerabilities that need to be included in the IM threat model 

in ITS applications were studied and discussed in [22] and 

summarized. The vulnerabilities that need to be considered in 

the IM process, in case of using the low-cost MEMS INS, 

odometer and automotive LiDAR sensors, are also given in 

Table 1 and will be discussed in detail in our future work. 

3. Integration of Navigation Systems in ITS  

Integrating INS and odometer with other navigation 

systems such as GNSS and LiDAR requires a good 

understanding of the nature of the sensor errors to be aided, 

which can be mitigated by proper modelling and estimation 

techniques. The most common estimation technique is the 

Kalman filter (KF) [63, 64] in the Extended form (EKF), that 

operates on the error states, since the measurement and 

dynamic models used are nonlinear. When integrating GNSS 

with INS/odometer, and LiDAR with INS/odometer, these 

error states are the differences between the INS/odometer 

states and the reference states, i.e. either GNSS states or 

LiDAR states. The detailed equations implemented in the 

EKF can be found in [20]. 

There are three methods presented in the literature for 

the integration of the navigation systems; the Loosely-

Coupled (LC), the Tightly-Coupled (TC), and the ultra-

tightly- (or deeply-) coupled integrations [65-67]. The first 

two methods can be used for the integration of INS with 

GNSS or LiDAR, but the latter method is used in integrating 

INS with GNSS only as it is performed at the tracking loop 

level, which requires access to the GNSS hardware. 

Consequently, the focus here will be on the LC and TC 

integrations for GNSS/INS/odometer [30], and for 

LiDAR/INS/odometer combinations [68, 69]. 
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Table 1 Characteristics and vulnerabilities of navigation systems used in ITS

System GNSS Low-cost MEMS IMU and odometer Automotive LiDAR 

Accuracy 

- Single Point Positioning 

(SPP): few meters 

- PPP: few decimeters 

before convergence and 

few centimeters after 

convergence  

- RTK: few centimeters 

[20] 

Deteriorates significantly with time. For 

instance, a performance analysis was 

performed for MTi-G-700 MEMS-IMU 

in [58]. During Global Positioning 

System (GPS) individual outages of 30s 

in ten areas, the error varied from 0.31m 

to 34.49m with average error 19.04m. 

Aiding INS by LiDAR can 

provide few centimeters 

positioning accuracy [59] 

Continuous 

Navigational 

Output 

No  

(environment-dependent) 

Yes  

(environment-independent) 

No  

(environment-dependent) 

Error 

Accumulation 

No Yes Yes 

Cost 

New dual-frequency 

receivers cost a few 

hundreds of US dollars, 

potential use in ITS 

A few tenth or hundreds of US dollars Below US$10,000 and it is 

predicted to drop to less 

than US$200 by 2022 [60] 

Sampling Rate Up to 100 Hz [61] Up to 1000 Hz [34] Up to 50Hz [62] 

Computational 

Burden 

Lighter than LiDAR and 

heavier than INS and 

odometer 

Light Heavy 

Navigation 

System 

Vulnerabilities 

and Errors 

- Satellite hardware errors 

- Receiver hardware errors 

- NLOS signals 

- Multipath 

- Ionosphere delay errors 

- Troposphere delay errors 

- Harsh space weather 

- Signal deformations 

- Jamming and Spoofing 

- Unintentional interference 

- In-correct ambiguity 

resolution in case of using 

carrier-based positioning 

such as RTK 

IMU systematic errors: 

- Bias offset 

- Scale factor 

- Misalignment 

- Non-orthogonality 

- Scale factor sign asymmetry 

IMU non-systematic errors: 

- In-run biases and scale factors  

- Run-to-run biases and scale factors 

Odometer systematic errors: 

- Wheel misalignment 

- Limited resolution (pulses/revolution) 

Odometer non-systematic errors: 

- Wheel diameter change (i.e. due to 

variations in pressure, temperature, 

speed and tread wear) 

- Uneven road surfaces (e.g. speed 

bumps) 

- Wheel slipping (e.g. over-acceleration) 

- Wheel skidding (e.g. fast turning) 

- Interaction with external bodies 
 

- Instrumental errors of the 

linear and angular 

measurements 

- Misalignment with the 

vehicle body 

- Severe vibrations 

- Errors based on the used 

scan matching technique. 

For instance, in the case of 

the line-based scan 

matching, errors can be 

caused by: 

▪ Detection of moving (not 

fixed) lines 

▪ The threshold set in the 

line detection process 

▪ The search space set in 

the line matching process. 

The main differences between the LC and TC schemes, 

in case of integrating GNSS with INS and odometer, are listed 

in Table 2. 𝛿𝜑 , 𝛿𝜆  and 𝛿ℎ  are the latitude, longitude and 

height errors, respectively. 𝛿𝑣𝑒, 𝛿𝑣𝑛 and 𝛿𝑣𝑢 are the velocity 

errors in the east, north and up directions. 𝛿𝐴 is the error in 

the azimuth angle. 𝑆𝐹𝑜𝑑  denotes the velocity scale factor 

error from the odometer, and 𝛿𝜔𝑧 is the gyroscope drift. 𝛿𝑏𝑟 

and 𝛿𝑑𝑟  denote the receiver clock bias and clock drift for 

each constellation. 𝐼  represents the unit matrix, and 0 

represents the zero matrix. 𝛽𝑣𝑜𝑑
 and 𝛽𝜔𝑧

 are the reciprocals 

of the autocorrelation times for 𝛿𝑣𝑜𝑑 and 𝛿𝜔𝑧, respectively, 

modelled using a first-order GM process. e2 is squared of the 

datum first eccentricity. 𝑝  and 𝑝̇  are the pseudoranges and 

pseudorange rates. The subscripts 𝐺  and 𝑁  denote the 

solutions obtained by GNSS, and obtained/predicted by INS 

and odometer, respectively. The flow diagrams for 

integrating the INS and odometer with GNSS in the LC and 

TC schemes are shown in Fig. 3 and Fig. 4, respectively.  

The main differences between the LC and TC schemes, 

in case of integrating LiDAR with INS and odometer using 

the line-based scan matching, are listed in Table 3. 𝛿∆𝑥 and 

𝛿∆𝑦  are the displacement errors in 𝑋𝑖  and 𝑌𝑖  directions, 

respectively. 𝛿𝑣𝑥  and 𝛿𝑣𝑦  are the velocity errors in 𝑋𝑖  and 

𝑌𝑖  directions. 𝛿𝑣𝑜𝑑  and 𝛿𝑎𝑜𝑑  denote the errors in the 

odometer velocity and acceleration, respectively. 𝛿∆𝐴 is the 

error in heading change, and 𝛽𝑎𝑜𝑑
 is the reciprocal of the 

autocorrelation time for 𝛿𝑎𝑜𝑑  modelled using a first-order 

GM process. In addition, the flow diagrams for integrating 

INS and odometer with LiDAR in the LC and TC schemes 

are illustrated in Fig. 5 and Fig. 6, respectively. 
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Table 2 The LC and TC GNSS, INS and odometer integration 

Integration Loosely-coupled GNSS/INS/odometer Tightly-coupled GNSS/INS/odometer 

Solutions 

Independent solutions (i.e. INS/odometer 

solution and GNSS solution) + Integrated 

solution 

Integrated solution 

Minimum Visible 

Satellites 

Four from the same constellation for SPP, and 

five for RTK and PPP  

One and the filter will be running in the prediction 

mode 

Complexity Simpler More complex 

Correlation in 

GNSS Independent 

Solution 

Yes No, as there are no independent solutions 

KF Error States 

Vector 

[𝛿𝜑 𝛿𝜆 𝛿ℎ 𝛿𝑣𝑒 𝛿𝑣𝑛 

𝛿𝑣𝑢 𝛿𝐴 𝑆𝐹𝑜𝑑 𝛿𝜔𝑧]
𝑇

9 𝑥 1
 

[𝛿𝜑 𝛿𝜆 𝛿ℎ 𝛿𝑣𝑒 𝛿𝑣𝑛 𝛿𝑣𝑢 
𝛿𝐴 𝑆𝐹𝑜𝑑 𝛿𝜔𝑧 𝛿𝑏𝑟 𝛿𝑑𝑟]

𝑇
11 𝑥 1

 

KF Transition 

Matrix 

[

𝐼3 𝑥 3 𝐹1 03 𝑥 3

03 𝑥 3 𝐼3 𝑥 3 𝐹3

03 𝑥 3 03 𝑥 3 𝐹2

]

9 𝑥 9

 
[

𝐼3 𝑥 3 𝐹1 03 𝑥 3 03 𝑥 2

03 𝑥 3 𝐼3 𝑥 3 𝐹3 03 𝑥 2

03 𝑥 3 03 𝑥 3 𝐹2 03 𝑥 2

02 𝑥 3 02 𝑥 3 02 𝑥 3 𝐹4

]

11 𝑥 11

 

𝐹1 =

[
 
 
 0

∆𝑡

𝑅𝑀+ℎ𝑘−1 0

∆𝑡

(𝑅𝑁+ℎ𝑘−1) 𝑐𝑜𝑠 𝜑𝑘−1 0 0

0 0 ∆𝑡]
 
 
 

   ,   𝐹2 = [

1 0 −∆𝑡
0 1 − 𝛽𝑣𝑜𝑑

∆𝑡 0

0 0 1 − 𝛽𝜔𝑧
∆𝑡

] 

𝐹3 = [

𝑣𝑜𝑑
𝑘−1 𝑐𝑜𝑠 𝐴𝑘−1 𝑐𝑜𝑠 𝑝𝑘−1 𝑣𝑜𝑑

𝑘−1 𝑠𝑖𝑛 𝐴𝑘−1 𝑐𝑜𝑠 𝑝𝑘−1 0

−𝑣𝑜𝑑
𝑘−1 𝑠𝑖𝑛 𝐴𝑘−1 𝑐𝑜𝑠 𝑝𝑘−1 𝑣𝑜𝑑

𝑘−1 𝑐𝑜𝑠 𝐴𝑘−1 𝑐𝑜𝑠 𝑝𝑘−1 0

0 𝑣𝑜𝑑
𝑘−1 𝑠𝑖𝑛 𝑝𝑘−1 0

]   ,   𝐹4 = [
1 ∆𝑡
0 1

] 

KF Measurement 

Vector 
[
 
 
 
 
 
𝜑𝑁 − 𝜑𝐺

𝜆𝑁 − 𝜆𝐺

ℎ𝑁 − ℎ𝐺

𝑣𝑒𝑁
− 𝑣𝑒𝐺

𝑣𝑛𝑁
− 𝑣𝑛𝐺

𝑣𝑢𝑁
− 𝑣𝑢𝐺]

 
 
 
 
 

  6 𝑥 1 

[
 
 
 
 
 
 
 
 
𝑝𝑁

1 − 𝑝𝐺
1

𝑝𝑁
2 − 𝑝𝐺

2

⋮
𝑝𝑁

𝑛 − 𝑝𝐺
𝑛

𝑝̇𝑁
1 − 𝑝̇𝐺

1

𝑝̇𝑁
2 − 𝑝̇𝐺

2

⋮
𝑝̇𝑁

𝑛 − 𝑝̇𝐺
𝑛]
 
 
 
 
 
 
 
 

2𝑛 𝑥 1

 

KF Design Matrix 

[
𝐼3 𝑥 3 03 𝑥 3 03 𝑥 3

03 𝑥 3 𝐼3 𝑥 3 03 𝑥 3
]
6 𝑥 9

 [
𝐻𝑛 𝑥 3 0𝑛 𝑥 3 0𝑛 𝑥 3 𝐹5

0𝑛 𝑥 3 𝐽𝑛 𝑥 3 0𝑛 𝑥 3 𝐹6
]
2𝑛 𝑥 11

 

𝐹5 = [

−1 0
−1 0
⋮ ⋮

−1 0

]     ,     𝐹6 = [

0 −1
0 −1
⋮ ⋮
0 −1

] 

𝐻 =

[
 
 
 
 
𝑈𝑋,𝑁

1 𝑈𝑌,𝑁
1 𝑈𝑍,𝑁

1

𝑈𝑋,𝑁
2 𝑈𝑌,𝑁

2 𝑈𝑍,𝑁
2

⋮ ⋮ ⋮
𝑈𝑋,𝑁

𝑛 𝑈𝑌,𝑁
𝑛 𝑈𝑍,𝑁

𝑛 ]
 
 
 
 

[

−(𝑅𝑁 + ℎ) 𝑠𝑖𝑛 𝜑 𝑐𝑜𝑠 𝜆 −(𝑅𝑁 + ℎ) 𝑐𝑜𝑠 𝜑 𝑠𝑖𝑛 𝜆 𝑐𝑜𝑠 𝜑 𝑐𝑜𝑠 𝜆

−(𝑅𝑁 + ℎ) 𝑠𝑖𝑛 𝜑 𝑠𝑖𝑛 𝜆 (𝑅𝑁 + ℎ) 𝑐𝑜𝑠 𝜑 𝑐𝑜𝑠 𝜆 𝑐𝑜𝑠 𝜑 𝑠𝑖𝑛 𝜆

[𝑅𝑁(1 − 𝑒2) + ℎ] 𝑐𝑜𝑠 𝜑 0 𝑠𝑖𝑛 𝜑

] 

𝐽 =

[
 
 
 
 
𝑈𝑋,𝑁

1 𝑈𝑌,𝑁
1 𝑈𝑍,𝑁

1

𝑈𝑋,𝑁
2 𝑈𝑌,𝑁

2 𝑈𝑍,𝑁
2

⋮ ⋮ ⋮
𝑈𝑋,𝑁

𝑛 𝑈𝑌,𝑁
𝑛 𝑈𝑍,𝑁

𝑛 ]
 
 
 
 

[

− 𝑠𝑖𝑛 𝜆 − 𝑠𝑖𝑛 𝜑 𝑐𝑜𝑠 𝜆 𝑐𝑜𝑠 𝜑 𝑐𝑜𝑠 𝜆
𝑐𝑜𝑠 𝜆 − 𝑠𝑖𝑛 𝜑 𝑠𝑖𝑛 𝜆 𝑐𝑜𝑠 𝜑 𝑠𝑖𝑛 𝜆

0 𝑐𝑜𝑠 𝜑 𝑠𝑖𝑛 𝜑
] 

▪ U𝑁
𝑛 = [U𝑋,𝑁

𝑛  U𝑌,𝑁
𝑛 U𝑍,𝑁

𝑛 ]𝑇 is the LOS unit vector between the receiver and satellite 𝑛 
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Fig. 3.  Loosely-coupled integration of GNSS, INS and odometer 

 

 

Fig. 4.  Tightly-coupled integration of GNSS, INS and odometer 

 

 

Fig. 5.  Loosely-coupled integration of LiDAR, INS and odometer using the line-based scan matching 
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Fig. 6.  Tightly-coupled integration of LiDAR, INS and odometer using the line-based scan matching 

 

Table 3 The LC and TC LiDAR, INS and odometer integration using the line-based scan matching 

Integration Loosely-coupled LiDAR / INS / odometer Tightly-coupled LiDAR / INS / odometer 

Solutions 

Independent solutions (i.e. INS+odometer 

solution and a LiDAR solution) + Integrated 

solution 

Integrated solution 

Minimum Matched 

Lines 

Two One 

Complexity Simple More complex 

Correlation in 

LiDAR 

Independent 

Solution 

Yes No, as there are no independent solutions 

KF Error States 

Vector 
[𝛿∆𝑥 𝛿∆𝑦 𝛿𝑣𝑜𝑑 𝛿𝑣𝑥 𝛿𝑣𝑦 𝛿∆𝐴 𝛿𝑎𝑜𝑑 𝛿𝜔𝑧]𝑇8 x 1

 

KF Transition 

Matrix 

[

𝐼2 𝑥 2 𝐹1 02 𝑥 3

03 𝑥 2 𝐹2 𝐹4

03 𝑥 2 03 𝑥 3 𝐹3

]

8 𝑥 8

 

𝐹1 = [
0 ∆𝑡 0
0 0 ∆𝑡

]   ,   𝐹2 = [
1 0 0

𝜔𝑧 ∆𝑡 𝑐𝑜𝑠 ∆𝐴 1 0
−𝜔𝑧 ∆𝑡 𝑠𝑖𝑛 ∆𝐴 0 1

]   ,   𝐹3 = [

1 0 −∆𝑡
0 1 − 𝛽𝑎𝑜𝑑

 ∆𝑡 0

0 0 1 − 𝛽𝜔𝑧
 ∆𝑡

] 

 

𝐹4 = [

0 ∆𝑡 0
(𝑎𝑜𝑑 𝑐𝑜𝑠 ∆𝐴 − 𝜔𝑧 𝑣𝑜𝑑 𝑠𝑖𝑛 ∆𝐴) ∆𝑡 ∆𝑡 𝑠𝑖𝑛 ∆𝐴 −𝑣𝑜𝑑  ∆𝑡 𝑐𝑜𝑠 ∆𝐴

−(𝑎𝑜𝑑 𝑠𝑖𝑛 ∆𝐴 + 𝜔𝑧 𝑣𝑜𝑑 𝑐𝑜𝑠 ∆𝐴) ∆𝑡 ∆𝑡 𝑐𝑜𝑠 ∆𝐴 𝑣𝑜𝑑  ∆𝑡 𝑠𝑖𝑛 ∆𝐴
] 

Measurement 

Vector 

[

∆𝑥𝑖 − ∆𝑥𝑁

∆𝑦𝑖 − ∆𝑦𝑁

∆𝐴𝑖 − ∆𝐴𝑁

]

3 𝑥 1

 

[
 
 
 
 
 
 
 
 
∆𝜌𝐿1

− ∆𝜌𝑁1

∆𝜌𝐿2
− ∆𝜌𝑁2

⋮
∆𝜌𝐿𝑢

− ∆𝜌𝑁𝑢

∆𝐴𝐿1
− ∆𝐴𝑁

∆𝐴𝐿1
− ∆𝐴𝑁

⋮
∆𝐴𝐿𝑢

− ∆𝐴𝑁 ]
 
 
 
 
 
 
 
 

2𝑢 𝑥 1

 

KF Design Matrix 

[

1 0 01 𝑥 3 0 01 𝑥 2

0 1 01 𝑥 3 0 01 𝑥 2

0 0 01 𝑥 3 1 01 𝑥 2

]

3 𝑥 8

 

[
 
 
 
 
 
 
 
 
𝑐𝑜𝑠 𝛼𝑖1

𝑠𝑖𝑛 𝛼𝑖1
01 𝑥 3 0 01 𝑥 2

𝑐𝑜𝑠 𝛼𝑖2
𝑠𝑖𝑛 𝛼𝑖2

01 𝑥 3 0 01 𝑥 2

⋮ ⋮ ⋮ ⋮ ⋮
𝑐𝑜𝑠 𝛼𝑖𝑢

𝑠𝑖𝑛 𝛼𝑖𝑢
01 𝑥 3 0 01 𝑥 2

0 0 01 𝑥 3 1 01 𝑥 2

0 0 01 𝑥 3 1 01 𝑥 2

⋮ ⋮ ⋮ ⋮ ⋮
0 0 01 𝑥 3 1 01 𝑥 2]

 
 
 
 
 
 
 
 

2𝑢 𝑥 8
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4. Integrity and Navigation Performance 

The integrity of the navigation system defines the 

level of trust in the system as mentioned above. It was firstly 

used in aeronautical applications [70-72] as one of the Key 

Performance Parameters (KPPs), which are defined in [73, 74] 

and include in addition to integrity the following: 

- Accuracy, which defines the level of agreement between 

the estimated and the true positions. It can be measured by 

the 95% confidence interval, for instance, using the Root 

Mean Square Error (RMSE), and it is computed assuming 

fault-free conditions and under standard system 

performance. 

- Continuity, which defines the capability of the navigation 

system to provide a position output and maintain the 

required accuracy level and integrity over the operational 

period of the system without interruption or raising an alert; 

and 

- Availability, which is the time ratio when the navigation 

system output is usable, maintaining the accuracy, integrity 

and continuity requirements.  

To assure positioning reliability, the position error (PE) 

should be bounded by a specified region around the true 

position, where the boundaries of these regions are defined 

by the Alert Limits (ALs). The integrity process aims to 

guarantee that the PEs lie inside this region with probability 

equals to at least, (1 − 𝑃𝐻𝑀𝐼 ) where 𝑃𝐻𝑀𝐼  is the maximum 

allowed probability of HMI. At the same time, the integrity 

process aims to satisfy the continuity requirement by 

guaranteeing that the maximum probability of raising an alert 

and interrupting the operation, without a valid reason, is 𝑃𝐹𝐴, 

which is denoted as the probability of False Alert (FA). 𝑃𝐹𝐴 

is a sub-allocation of the continuity requirement 𝐶0 , i.e. 

𝑃𝐹𝐴 < 1 − 𝐶0 , where 𝐶0  should also account for the 

probability of the justified alert in case of the PL exceeding 

the AL [75]. 

In aviation, where the integrity concept using SPP is 

quite mature, the region defined by the ALs is cylindrical, 

where the radius of the cylinder is the Horizontal Alert Limit 

(HAL) and its height is the Vertical Alert Limit (VAL) (see 

Fig. 7-a). On the other hand, in ITS applications, in most 

cases only the horizontal errors are of interest and the 

concerned directions are the Along-Track (AT) and the 

Cross-Track (CT) directions with the corresponding ALs 

denoted as ALAT  and ALCT , respectively. Therefore, the 

region defined by the ALs is rectangular [76] (see Fig. 7-b). 

𝑃𝐻𝑀𝐼  maybe different in both directions, such that: 

                              𝑃𝐻𝑀𝐼𝐴𝑇
+ 𝑃𝐻𝑀𝐼𝐶𝑇

= 𝑃𝐻𝑀𝐼                            (9) 

where 𝑃𝐻𝑀𝐼𝐴𝑇
 and 𝑃𝐻𝑀𝐼𝐶𝑇

 are the maximum allowed HMI 

probability in the AT and CT directions, respectively. Since 

in practice PE is not known in real-time processing, it is 

replaced by its statistical bound, i.e. the PL. Thus, in order to 

verify the availability of system integrity, the following two 

conditions have to be satisfied: 

                                          𝑃𝐿𝐴𝑇 ≤ 𝐴𝐿𝐴𝑇                                   (10) 

                                          𝑃𝐿𝐶𝑇 ≤ 𝐴𝐿𝐶𝑇                                   (11) 

where 𝑃𝐿𝐴𝑇  and 𝑃𝐿𝐶𝑇  are the PLs in the AT and CT 

directions, respectively, and 𝐴𝐿𝐴𝑇  and 𝐴𝐿𝐶𝑇  are the ALs in 

the AT and CT directions. 

 

Fig. 7. (a) Cylindrical AL region in aviation, (b) 

rectangular AL region in ITS 

 

Meeting the required integrity requirements is the 

main goal of each integrity process, and to achieve this target, 

it is essential to identify, characterize and consider the 

probability of all error sources affecting the navigation 

solution that may lead to its failure, according to the sensor 

used and the work environment. Since statistical testing is 

typically applied, the probability distributions of the system 

errors have to be considered. For instance, in GNSS 

navigation, and according to the method used such as RTK or 

PPP, the clock and ephemerides error, multipath error, 

residual atmospheric errors and the noise can affect the 

navigational solution. These error sources then need to be 

over-bounded considering the different ways in which the 

errors can be presented when processing the data. The 

computation of the convolution of all error sources, in case of 

using empirical distributions for the different error sources, 

will be complicated and prohibitive even for powerful 

computers to calculate the exact integrity risk. Therefore, the 

process necessitates replacing the probability distribution of 

the combined error sources, i.e. their empirical distribution, 

by one distribution, the so-called the over-bounding 

distribution.  

For safety reasons, the integrity risk computed based 

on this over-bounding distribution should always exceed the 

integrity risk computed using the empirical distribution of the 

combined errors. Since the only finite variance distribution 

that is stable through convolution is the normal distribution, 

therefore, it is almost unavoidable to use normal distributions 

as the basis for the over-bounding distributions [77]. A 

number of over-bounding strategies exist in the literature, 

such as the single Cumulative Distribution Function (CDF) 

over-bound, the paired CDF over-bound, the moment over-

bound, the excess-mass CDF over-bound, and the excess-

mass Probability Distribution Function (PDF) over-bound 

[78]. As an example, Fig. 8 shows the over-bounding strategy 

in the case of using the paired CDF over-bound. 

 
Fig. 8.  Paired CDF over-bounding strategy 

 

In GNSS, IM is implemented either at the system level 

or at the user level. At the system level, Space-Based 

Augmentation Systems (SBAS) [79] or Ground-Based 

Augmentation Systems (GBAS) [80] while primarily provide 

real-time corrections that can improve the measurements 
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accuracy, they determine and inform the user through their 

messages which satellites are faulty, such that the user does 

not use these satellites. In addition, they generate error 

bounds that bound the actual errors, to be used in the IM 

process. In aviation, SBAS and GBAS are efficient ways to 

guarantee the integrity for the positioning with an accuracy of 

a few meters. On the other hand, at the user level, the 

redundancy in GNSS signals can be exploited in IM by 

performing a consistency check of the observation residuals. 

This method is known as the Receiver Autonomous Integrity 

Monitoring (RAIM) [81, 82]. So far, in aviation, only GNSS 

phase-smoothed code observations that meet the certification 

requirements are used, and only in non-precision approaches, 

with trials for some Category I approaches. However, the 

accuracy obtained from code observations ranges between 

1m to 10m, which is not sufficient for ITS applications that 

need accuracy at the sub-m level. Therefore, carrier-phase 

observations need also to be used. Consequently, the 

traditional SPP used in aviation should be replaced by either 

RTK or PPP in ITS applications. In addition, successful 

ambiguity resolution in these methods in the harsh 

environments depends on the availability of observations 

from several GNSS systems as presented in [83, 84], using 

observations from a number of frequencies and having a good 

satellite geometry. The need for ambiguity resolution in case 

of PPP was studied in [85], highlighting the need for fixed 

ambiguities in case of the accuracy requirement at a few 

centimetres. However, for the few decimetres accuracy 

needed for most ITS applications, float solutions could be 

sufficient. 

5. RAIM Algorithms for ITS 

The RAIM algorithm, which relies on the redundancy 

of the observations, and therefore is suitable for GNSS, 

should be designed taking into consideration the different 

land environments involved in ITS applications. Many forms 

of RAIM GNSS-based algorithms exist in the literature. The 

main RAIM GNSS-based methods are presented and 

compared in [86, 87], and the complexities and the existing 

research of the integrity process in urban environments are 

discussed in [86]. 

The classical RAIM algorithms were used with 

aviation applications for a long time. In the past decade, the 

method evolves into the Advanced RAIM (ARAIM) GNSS-

based algorithm [88-92] that offer multiple advantages over 

the traditional RAIM, which can be summarized as: 

- ARAIM considers the possibility of multiple faults, 

whereas traditional RAIM only considers single faults. 

- ARAIM includes proof of safety for the integrity process. 

- ARAIM uses dual-frequency GNSS observations to 

eliminate the first-order ionospheric delays. 

- It exploits the multi-constellation GNSS, instead of using 

only GPS. 

As multi-band and multi-constellation GNSS 

observations are utilized in the RTK and PPP methods used 

in ITS, ARAIM is more suitable to be used. However, in the 

land environment, additional vulnerabilities such as NLOS 

effect, a more complicated multipath effect, spoofing, 

jamming and unintentional interference, exist in particular in 

the urban environment. The ARAIM baseline algorithm was 

developed applying the SPP technique, which is suitable for 

aviation. However, replacing SPP by either RTK or PPP, in 

ITS, requires further investigation of the additional 

vulnerabilities associated with the use of the PPP or RTK 

methods. In addition, mathematical modifications are 

required to adapt the traditional models to PPP or RTK. In 

this section, the traditional ARAIM LS snapshot algorithm 

will be first discussed as the basis for future developments. In 

the literature, this algorithm was applied to GNSS, but it can 

also be applied for LiDAR after a suitable modification as 

will be presented next. This algorithm can be useful in case 

of the LC integrations mentioned above, as the individual 

navigational solutions are obtained from the aiding system 

(GNSS or LiDAR) before being integrated with INS and 

odometer using KF. However, for the TC integrations, single 

KF-based processing is carried out integrating the different 

navigational systems, and therefore, new KF IM architectures 

are needed for this purpose. Thus, the KF IM architectures, 

existing in the literature, will be briefly discussed in this 

section as the basis for our future work in this field. 

5.1 LS-based Snapshot ARAIM 

The ARAIM algorithm can be divided into three main 

steps. The first step is defining the threat model, i.e. the 

alternative hypotheses (fault modes) to be considered, their 

total number, and the probability of each fault mode. The 

second step is the FDE process. In GNSS, the fault modes 

mainly refer to outliers in code observations or undetected 

cycle slips in the phase observations. For other sensors, in 

cases of difficulties of obtaining good threat models, signal-

based, knowledge-based and hybrid/active approaches can be 

used to diagnose the faults and perform the FDE process [93, 

94]. The third step is the computation of the PLs (as the 

maximum statistical value for PE computed at the designed 

integrity risk since PE cannot be computed in real-time 

practice) and next check that PL<AL to declare the 

availability of IM and the navigation solution. These three 

steps were extensively studied before in case of using GNSS 

for aviation, but very limited work was carried out for ITS. 

The LS-snap shot algorithm used in aviation can serve as the 

basis for future development in IM for ITS applications that 

will use GNSS and also in its integration with other sensors. 

Herein, the same approach will be tailored for its application 

with LiDAR using the line-based scan matching. The main 

differences between GNSS and LiDAR, when applying this 

strategy, will be addressed.  

5.1.1 Threat Model: 

If 𝑥̂ is the unknowns vector, the observation equations 

of the navigation system can be linearized in the form: 

                                         𝑦 = 𝐴𝑥̂ + 𝑒                                      (12) 

where 𝑦 is the measurement vector, 𝐴 is the design matrix 

and 𝑒 is the measurement error vector. The first step is to 

compute the total number of alternative hypotheses to be 

considered. Note that we only have one null hypothesis, i.e. 

the system being in a fault-free mode, whereas the total 

number of fault modes, i.e. the number of alternative 

hypotheses 𝑁𝐻𝑎
, for n observations can theoretically be: 

  𝑁𝐻𝑎
= 𝑛 +

𝑛!

2! (𝑛 − 2)!
+ ⋯+

𝑛!

𝑁𝑓𝑎𝑢𝑙𝑡
𝑚𝑎𝑥 ! (𝑛 − 𝑁𝑓𝑎𝑢𝑙𝑡

𝑚𝑎𝑥 )!
    (13) 

In practice, the maximum number of simultaneous 

observation faults (i.e. code outliers or phase cycle slips in 

GNSS) that can be monitored, 𝑁𝑓𝑎𝑢𝑙𝑡
𝑚𝑎𝑥 , is calculated iteratively 

as follows [88]:  
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                𝑁𝑓𝑎𝑢𝑙𝑡
𝑚𝑎𝑥 = 𝑚𝑎𝑥(𝑟) :

(∑ 𝑃𝑗
𝑛
𝑗=1 )

𝑟

𝑟!
> 𝑃𝑡ℎ𝑟𝑒𝑠.             (14) 

where 𝑟 is the number of simultaneous faults, 𝑃𝑗 is the fault 

probability of measurement 𝑗 and  𝑃𝑡ℎ𝑟𝑒𝑠. is the integrity risk 

threshold coming from the unmonitored measurements fault. 

max(𝑟) should be less than/or equal the degrees of freedom 

(redundancy) in the system.  

Assuming that faulty measurements are independent, 

the probability of occurrence of each fault mode 𝑃𝐻𝑎
 can be 

expressed as: 

                                         𝑃𝐻𝑎
= ∏ 𝑃𝑗                                    (15) 

for the number of simultaneous faulty measurements. For 

GNSS, a complete list of system vulnerabilities using the 

RTK technique is given in [22], from which one can decide 

which vulnerabilities can cause a fault (e.g. large multipath or 

NLOS causes an outlier in a code observation), its impact and 

probability. When multiple faults affect a single observation, 

their effects can be combined into one term.  So far, faults due 

to multipath, NLOS, and ambiguity resolution have not been 

covered within a complete framework. Therefore, they are 

not going to be addressed in this review article and will be 

addressed in future work. Similarly, vulnerabilities of other 

sensors and their associated threat model will be addressed in 

our future work. As an example, Table 4 shows the main 

differences between GNSS and LiDAR in this step. 

5.1.2 FDE Algorithms: 

A key element of RAIM is the FDE process. Utilizing 

the redundancy in the observations, the FDE checks the 

consistency of all possible combinations of observations to 

identify the faulty ones (outliers) that are inconsistent with 

the rest of the observations. Therefore, increasing the 

measurements redundancy enhances the power of FDE. This 

process can be performed either in the position domain or in 

the observation domain [76].  

The alternative hypotheses 𝐻𝑎  (the faulty cases) are 

tested to detect any anomalies affecting the system. If 

anomalies are detected, the corresponding observations are 

excluded. This can be expressed as: 

                                       𝐻0:    𝑦 = 𝐴𝑥 + 𝑒                              (16) 

                                 𝐻𝑎:    𝑦 = 𝐴𝑥 + 𝐶𝛻 + 𝑒                         (17) 

where 𝐻0 is the null hypothesis. 𝐶 is a matrix identifying the 

tested observations (suspected to be faulty) and 𝛻 is the error 

vector. For 𝑛 observations and 𝑧 number of faults, 𝐶 will be 

𝑛  x 𝑧  matrix, and 𝛻  will be 𝑧  x 1  vector containing the 

magnitude of each bias. 

If the FDE process is performed in the position domain, 

the solution of each hypothesis is calculated as: 

                                              𝑥̂0 = 𝑆0𝑦                                      (18) 

                                              𝑥̂𝑎 = 𝑆𝑎𝑦                                      (19) 

where 𝑥̂0  denotes the solution obtained by using all 

observations (assuming a null hypothesis, i.e. no faulty 

observations, and thus all observations are used), and 𝑥̂𝑎  is 

the solution from a subset of observations, excluding the 

observations suspected to be faulty (the alternative hypothesis 

a). The pseudo-inverse matrices 𝑆0  and 𝑆𝑎  map the 

observation space onto the space of the estimated unknowns 

for the null hypothesis, and the alternative hypothesis 𝑎 , 

respectively. In least squares, 𝑆0 = 𝑅(𝐴𝑇𝑊𝐴)−1𝐴𝑇𝑊  and 

similarly 𝑆𝑎. 𝑊 is the weight matrix of all-satellites, taken as 

the inverse of the VC matrix of the observations (𝑄), and  

considering the weight of faulty observations as zeros. The 

transformation matrix 𝑅 is used to transform the output of the 

navigational solution onto the AT and CT directions. 

For each alternative hypothesis, the Solution 

Separation (SS) method can be applied, where the test statistic 

∆𝑥̂𝑎 is computed as [89]: 

                                     ∆𝑥̂𝑎 = |𝑥̂𝑎 − 𝑥̂0|                                  (20) 

and its standard deviation 𝜎𝑠𝑠,𝑎𝑞
 for the component q is 

computed. 𝜎𝑠𝑠,𝑎𝑞
= √𝑎𝑞

𝑇(𝑆𝑎 − 𝑆0)𝑄(𝑆𝑎 − 𝑆0)
𝑇𝑎𝑞  , where 

𝑎𝑞  is a column vector which keeps all elements as zeros and 

the required unknown position element (e.g. AT, CT) as one. 

𝐻0 is rejected in favour of 𝐻𝑎 if 

                                         
𝑎𝑞

𝑇∆𝑥̂𝑎

𝜎𝑠𝑠,𝑎𝑞

> 𝑘𝐹𝐴𝑞
                                 (21) 

where 𝑘𝐹𝐴𝑞
 is the SS test threshold, which depends on the 

tested element as will be addressed in Table 5, and 𝑞 denotes 

the AT or CT direction. 

The study in [95] shows that there could be a very 

small difference in the FDE outcome when it is applied in the 

position domain from that when being applied in the 

observation domain, due to changes in the size of the 

threshold zone of the projected faults in these domains. 

Therefore, the FDE process is complemented by its 

application in the observation domain [96, 97]. The  

alternative hypotheses 𝐻𝑎  are tested against 𝐻0  using the 

Generalized Likelihood Ratio (GLR) test derived from the 

Neyman-Pearson principle [98]. A Uniformly Most Powerful 

Invariant (UMPI) test statistic using the GLR criterion, can 

be formed as [97]: 

    𝑇𝑑𝑓 = 𝑒̂0
𝑇𝑊𝐶(𝐶𝑇𝑊𝑄𝑒̂0

𝑊𝐶)−1𝐶𝑇𝑊𝑒̂0 = 𝛻̂𝑇𝑄𝛻̂
−1𝛻̂      (22) 

where 𝑒̂0 is the residual vector using LS in case of the null 

hypothesis and can be computed, with its VC matrix 𝑄𝑒̂0
, 

through the Best Linear Unbiased Estimation (BLUE) as: 

             𝑒̂0 = 𝑦 − 𝐴𝑥̂0 = [𝐼 − 𝐴(𝐴𝑇𝑊𝐴)−1𝐴𝑇𝑊]𝑦           (23) 

                           𝑄𝑒̂0
= 𝑄 − 𝐴(𝐴𝑇𝑊𝐴)−1𝐴𝑇                         (24) 

The BLUE of 𝛻 can be calculated, with its VC matrix 𝑄∇̂, as: 

                          𝛻̂ = (𝐶𝑇𝑊𝑄𝑒̂𝑊𝐶)−1𝐶𝑇𝑊𝑒̂                        (25) 

                                𝑄𝛻̂ = (𝐶𝑇𝑊𝑄𝑒̂𝑊𝐶)−1                            (26) 

Table 4 GNSS and LiDAR fault modes definition (n is the number of observations) 

Navigation System GNSS LiDAR 

Linearization Needed Yes No (Equation 8 is linear) 

Number of Measurements 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑎𝑡𝑒𝑙𝑙𝑖𝑡𝑒𝑠 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑚𝑎𝑡𝑐ℎ𝑒𝑑 𝑙𝑖𝑛𝑒𝑠 x 2  
Alternative Hypotheses 

(Faulty Measurements) 

Single or multiple faults in satellite 

measurements 

Single or multiple faults in the matched 

lines between consecutive scans 

Max Number of Simultaneous 

Faulty Observations 

𝑛 − 3 − 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑛𝑠𝑡𝑒𝑙𝑙𝑎𝑡𝑖𝑜𝑛𝑠 (𝑛 − 4)/2 
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To accept the null hypothesis, the following condition should 

be satisfied: 

                          𝑇𝑑𝑓  ≤ 𝜒𝑑𝑓
2 −1

(1 − 𝑃𝐹𝐴 𝜒2)                          (27) 

where 𝜒𝑑𝑓
2 −1

 is the inverse CDF (quantile) of a central 𝜒2 

distribution with 𝑑𝑓  degrees of freedom and 𝑃𝐹𝐴 𝜒2  is the 

probability of false alert approximated as the continuity 

budget allocated to the 𝜒2  test. If the test fails, the null 

hypothesis is rejected and the faulty observations need to be 

identified and excluded. Consequently, the maximum value 

in the test statistics is chosen as the best candidate for 

exclusion. It is remarked that other testing statistics also exist. 

A comparison is given in [99]. 

Because of a slight possibility of a discrepancy 

between the outcome of the two tests (SS and the test applied 

in the observation domain, simply known as Chi-square test), 

one can apply the SS test first, and when all test statistics are 

below the thresholds, a confirmation check is performed in 

the observation domain. If this test passes, we proceed to the 

next step in IM, i.e. compute the PLs, and if the confirmation 

check fails, an alert has to be declared and the PL cannot be 

computed. If one of the SS tests fails, fault exclusion should 

commence by choosing the best candidate to be excluded. 

The subset giving the maximum value of the normalized  

𝑎𝑞
𝑇∆𝑥̂𝑎/𝜎𝑠𝑠,𝑎𝑞

 is the best candidate for exclusion. After 

exclusion, all the previous steps have to be repeated again to 

ensure that the correct faulty observations are excluded until 

all the SS tests and the consistency check pass.  Table 5 shows 

the main differences when applying the FDE algorithms 

described above in case of GNSS and LiDAR. 

5.1.3 Computation of the PL: 

When the FDE test passes in the previous step, the PL 

is computed. The effect of possible nominal biases on the 

solution should be considered and bounded by the PLs. 

Denoting the total effect of the nominal biases on 𝑥̂0 and 𝑥̂𝑎 

as 𝑏0 and 𝑏𝑎, respectively, and the maximum nominal bias in 

a measurement 𝑗 by 𝑏𝑗, the measurement biases are projected 

in the position domain as: 

                                    𝑏0𝑞
= ∑|𝑎𝑞

𝑇𝑆0|𝑏𝑗

𝑛

𝑗=1

                              (28) 

                                    𝑏𝑎𝑞
= ∑|𝑎𝑞

𝑇𝑆𝑎|𝑏𝑗

𝑛

𝑗=1

                              (29) 

Assuming the observation errors are normally 

distributed by the over-bounding distribution (cf. Section 4), 

the upper-values of PLs in the CT direction (𝑃𝐿𝐶𝑇) and in the 

AT direction (𝑃𝐿𝐴𝑇) can be computed as [5]: 

∑ 𝑃𝐻𝑎
∅(

𝑃𝐿𝐶𝑇 − 𝑘𝐹𝐴𝐻
𝜎𝑠𝑠,𝑎𝐶𝑇

− 𝑏𝑎𝐶𝑇

𝜎𝑎𝐶𝑇

)

𝑁𝐻𝑎

𝑗=1

+ 2∅(
𝑃𝐿𝐶𝑇 − 𝑏0𝐶𝑇

𝜎0𝐶𝑇

) = 𝑙𝐶𝑇  𝑃𝐻𝑀𝐼         (30) 

∑ 𝑃𝐻𝑎
∅ (

𝑃𝐿𝐴𝑇 − 𝑘𝐹𝐴𝐻
𝜎𝑠𝑠,𝑎𝐴𝑇

− 𝑏𝑎𝐴𝑇

𝜎𝑎𝐴𝑇

)

𝑁𝐻𝑎

𝑗=1

+ 2∅(
𝑃𝐿𝐴𝑇 − 𝑏0𝐴𝑇

𝜎0𝐴𝑇

) = 𝑙𝐴𝑇  𝑃𝐻𝑀𝐼         (31) 

where 𝜎0 and 𝜎𝑎 denote the standard deviations of 𝑥̂0 and 𝑥̂𝑎, 

respectively. 𝑙𝐶𝑇  and 𝑙𝐴𝑇  are the allocation of 𝑃𝐻𝑀𝐼  in the CT 

and AT directions, respectively, where 𝑙𝐶𝑇 + 𝑙𝐴𝑇 = 1 . A 

method to solve these equations using a half-interval search 

can be found in [88]. For sensors other than GNSS, e.g. 

LiDAR, the same formulas can be used, where 𝑘𝐹𝐴𝐻
 is 

replaced by 𝑘𝐹𝐴ℎ𝑜𝑟.
 

 

Table 5 The FDE process in case of GNSS and LiDAR 

Navigation System GNSS LiDAR 

Matrix 𝐶 
Each of its columns has one corresponding 

to the faulty observation and zeros elsewhere 

Each of its columns has 2 ones corresponding 

to the faulty line and zeros elsewhere 

Rotation Matrix 𝑅 
Transforms the output from the ECEF-frame 

to the b-frame (AT and CT directions) 

Unity matrix, because the solution is referred 

to the b-frame (AT and CT directions) 

SS test statistic 

[

𝑋𝑖𝑎
− 𝑋𝑖0

𝑌𝑖𝑎
− 𝑌𝑖0

𝐻𝑖𝑎
− 𝐻𝑖0

] 

▪ 𝑋 and 𝑌 are the CT and AT coordinates, 

respectively. 𝐻 is the height. 

[
∆𝑥𝑖𝑎

− ∆𝑥𝑖0

∆𝑦𝑖𝑎
− ∆𝑦𝑖0

] 

Continuity budget 

allocation for SS tests 

• 𝑃𝐹𝐴𝐻
 : the allowed probability of false 

alert in the horizontal direction 

• 𝑃𝐹𝐴𝑉
 : the allowed probability of false 

alert in the vertical direction 

• 𝑃𝐹𝐴 𝜒2 

• 𝑃𝐹𝐴ℎ𝑜𝑟.
: the allowed probability of FA due 

to the horizontal position change 

• 𝑃𝐹𝐴 𝜒2 

SS test thresholds 

• 𝑘𝐹𝐴𝐻
= −∅−1(

𝑃𝐹𝐴𝐻

4𝑁𝐻𝑎

) 

• 𝑘𝐹𝐴𝑉
= −∅−1(

𝑃𝐹𝐴𝑉

2𝑁𝐻𝑎

), usually not needed 

in most ITS applications 

• 𝑘𝐹𝐴ℎ𝑜𝑟.
= −∅−1(

𝑃𝐹𝐴ℎ𝑜𝑟.

4𝑁𝐻𝑎

) 

▪ 𝑃𝐹𝐴𝐻
 and 𝑃𝐹𝐴ℎ𝑜𝑟.

 is assumed to be equally distributed in the AT and CT directions. 

▪ 𝑘𝐹𝐴𝐻
 and 𝑘𝐹𝐴ℎ𝑜𝑟.

 are used twice (for AT and CT directions) 

▪ ∅ is the left side of the CDF of a standard zero-mean Gaussian distribution 
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The PL can be approximated for low-cost systems 

with limited computational power as follows: 

                            𝑃𝐿𝐴𝑇 = 𝑘𝐴𝑇 𝜎0𝐴𝑇
+ 𝑏0𝐴𝑇

                           (32) 

                            𝑃𝐿𝐶𝑇 = 𝑘𝐶𝑇  𝜎0𝐶𝑇
 + 𝑏0𝐶𝑇

                          (33) 

where 

                               𝑘𝐴𝑇 = −∅−1 (
𝑙𝐴𝑇  𝑃𝐻𝑀𝐼

2
)                         (34) 

                               𝑘𝐶𝑇 = −∅−1 (
𝑙𝐶𝑇 𝑃𝐻𝑀𝐼

2
 )                        (35) 

The PL algorithms, in case of using INS and odometer 

with the RTK technique in the de-coupled mode, is expressed 

as [100, 101]: 

𝑃𝐿𝐴𝑇 = √(𝑠𝑖𝑛 𝜃 𝑎1
𝑇𝑆 [

𝑏𝜃𝐼𝑀𝑈

𝑏𝑜𝑑𝑜.
])

2

+ (𝑐𝑜𝑠 𝜃 𝑎2
𝑇𝑆 [

𝑏𝜃𝐼𝑀𝑈

𝑏𝑜𝑑𝑜.
])

2

      

           + 𝑘𝐴𝑇𝜎𝐴𝑇                                                                          (36) 

𝑃𝐿𝐶𝑇 = √(𝑐𝑜𝑠 𝜃 𝑎1
𝑇𝑆 [

𝑏𝜃𝐼𝑀𝑈

𝑏𝑜𝑑𝑜.
])

2

+ (𝑠𝑖𝑛 𝜃 𝑎2
𝑇𝑆 [

𝑏𝜃𝐼𝑀𝑈

𝑏𝑜𝑑𝑜.
])

2

       

           + 𝑘𝐶𝑇𝜎𝐶𝑇                                                                          (37) 

where 𝜃 is the azimuth angle. 𝜎𝐴𝑇  and 𝜎𝐶𝑇  are the standard 

deviations of the solution in the AT and CT directions, 

respectively, which can be computed by applying the 

covariance propagation as described in detail in [101]. 𝑏𝜃𝐼𝑀𝑈
 

is the INS heading bias, which is assumed to increase linearly 

with time. 𝑏𝑜𝑑𝑜  denotes the bias caused by the odometer 

speed. 𝑎1
𝑇 = [1,0], 𝑎2

𝑇 = [0,1], and 𝑆  is the pseudo-inverse 

matrix used to map the observations space onto the unknowns 

space as mentioned earlier. 

5.2 KF-based Integrity Algorithms 

A number of studies discussed the integrity process 

using Kalman filter processing. [102] analysed the 

performance of GPS/INS integration running a number of 

sub-filters and assuming single satellite faults. For fault 

detection, the SS test statistics are calculated between the all-

in-view filter (i.e. assuming no faults) and the sub-filters. The 

main problem of running these sub-filters is the increased 

computational burden especially with the increase in the 

number of visible satellites when using multi-constellations. 

In another study, [103] studied the GNSS/INS integration, 

and proposed the inclusion of the predicted state parameters 

with the use of code observations in the adjustment to 

improve the FDE capability and test reliability. 

The study in [104] presented a KF-based IM approach 

that provides a tight-bound on the integrity risk assuming the 

worst-case fault condition. The approach adopts a fault 

detection procedure in the observations domain. The KF 

predicted residual (vector of innovations) 𝑒𝑘  is computed, 

and its weighted norm 𝑟𝐾𝐹 at epoch 𝑘 is expressed as: 

                                     𝑟𝐾𝐹𝑘
= 𝑒𝑘

𝑇 𝑄𝑒𝑘
−1 𝑒𝑘                               (38) 

where 𝑄𝑒𝑘
 is the VC matrix of the vector of innovations. The 

cumulative KF test statistics 𝑅𝐾𝐹 , to a certain chosen time 

length, is then computed using the test statistics at the 

previous epoch as follows: 

                               𝑅𝐾𝐹𝑘
= 𝑅𝐾𝐹𝑘−1

+ 𝑟𝐾𝐹𝑘
                           (39) 

The detection Chi-squared threshold is derived using 

the weights and the independent random variables, which can 

be obtained for example by the use of Singular Value 

Decompositions (SVDs) in the recursive form as described in 

[104]. Regarding the integrity risk bound, a batch LS method 

is used to calculate the worst-case fault vectors (i.e. of all time 

epochs). At each epoch, the fault vector is used as an input to 

a second KF to compute the mean of the estimate error vector, 

which is used to calculate the PLs. The main problem of this 

approach is the computational burden needed to implement a 

batch LS and a second KF. In a following work, [105] derived 

a sequential IM technique based on the sum of squared 

weighted norms for a sequence of KF innovations. The study 

developed a recursive approach to compute the worst-case 

Failure Mode Slope (FMS) and determine an upper bound on 

the integrity risk. In addition, they utilized the sequential 

FMS approach for fault exclusion by extracting the sub-set 

solutions without the need to run parallel KFs. 

In [106], another KF-based RAIM algorithm was 

presented. For fault detection, a LS-based method is used 

applying three test statistics. Firstly, the pseudorange and 

pseudorange rate residual vector is obtained as the difference 

between the output pseudoranges/pseudorange rates and their 

predicted values. The predicted pseudorange/pseudorange 

rate are obtained based on the filter predicted receiver 

position, the satellite position, predicted receiver clock bias 

and the predicted atmospheric errors. Next, this vector is 

modelled as the observation vector in a parametric form, and 

the three test statistics are performed for three epoch ranges 

[106]. 

A sequential PPP KF IM architecture was proposed in 

[107]. The estimated parameters in the filter include the 

position, clock biases, float ambiguities, tropospheric delay, 

and multipath error. The method also requires running a bank 

of parallel KFs. To reduce the computational load, most 

modelled errors are computed only once based on the fault-

free case. The approach assumes an optimal fault-free (all-in-

view) estimator, which gives for each subset filter [107]: 

                                 𝜎𝑠𝑠,𝑎
2 = 𝜎0,𝐾𝐹

2 − 𝜎𝑎,𝐾𝐹
2                              (40) 

where 𝜎0,𝐾𝐹
2  and 𝜎𝑎,𝐾𝐹

2  are the error variances obtained from 

the fault-free filter and the tested subset filter, respectively. 

Hence, the SS standard deviation 𝜎𝑠𝑠,𝑎 can be updated easily, 

and the PLs can be computed using Equations 30 and 31. 

The study in [108] presented IMU/LiDAR integration 

to enable the integrity risk evaluation, while accounting for 

the incorrect associations between mapped and observed 

landmarks, and incorporating LiDAR return-light intensity 

measurements to better distinguish between landmarks. An 

analytical integrity risk bound, provided by [109] is used to 

consider all possible incorrect associations. The performance 

assessment showed a significant reduction in the integrity risk 

by applying the developed integration and incorporating 

LiDAR return-light intensity. 

6. Conclusion 

A reliable and robust IM is an essential task for ITS, 

in particular for safety-related applications such as 

autonomous driving. In open-sky environments, the precise 

GNSS-based positioning methods could be enough to satisfy 

the required navigation performance metrics (integrity, 

accuracy, continuity, and availability). In urban canyons, 

however, the large multipath and the poor satellite geometry 

with limited satellite visibility may hamper the achievement 



14 

 

of this goal. Hence, the integration of GNSS with other 

positioning sensors such as INS, odometer and LiDAR 

sensors, becomes essential in such environments. The 

characteristics and vulnerabilities of each navigation system 

were briefly reviewed. In addition, the integration schemes 

between these sensors, for ITS applications were presented 

describing the merits, limitations, and the basic mathematical 

model of each of them. 

The current integrity algorithms, that can be applied in 

ITS, were reviewed. The traditional ARAIM LS GNSS-based 

algorithm was discussed, and a similar algorithm with 

suitable modification to be applied with LiDAR was 

proposed. These LS algorithms are useful for the LC 

integrations and in case of using a single navigational system. 

In addition, the limited KF-based IM studies, available in the 

literature, were discussed. These studies can be useful in 

future work when applying the TC integrations, or the KF-

based single system techniques (e.g. RTK and PPP).   

The integrity main framework is discussed. However, 

while IM was comprehensively covered for GNSS in aviation, 

its methodology in the land environment applications is very 

limited. Moreover, the IM architectures for other sensors and 

the integrated systems, which can be applied in open-sky and 

urban environments, need to be developed. Therefore, future 

research will have more challenges, considering a large 

number of vulnerabilities of each sensor and when the sensors 

are combined, their FDE, PLs, and the overbounding error 

distribution.  
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