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Abstract Introduction: Plasma biomarkers for Alzheimer’s disease (AD) diagnosis/stratification are a

“Holy Grail” of AD research and intensively sought; however, there are no well-established plasma

markers.

Methods: A hypothesis-led plasma biomarker search was conducted in the context of international

multicenter studies. The discovery phase measured 53 inflammatory proteins in elderly control (CTL;

259), mild cognitive impairment (MCI; 199), and AD (262) subjects from AddNeuroMed.

Results: Ten analytes showed significant intergroup differences. Logistic regression identified five

(FB, FH, sCR1, MCP-1, eotaxin-1) that, age/APOε4 adjusted, optimally differentiated AD and

CTL (AUC: 0.79), and three (sCR1, MCP-1, eotaxin-1) that optimally differentiated AD and MCI

(AUC: 0.74). These models replicated in an independent cohort (EMIF; AUC 0.81 and 0.67). Two

analytes (FB, FH) plus age predicted MCI progression to AD (AUC: 0.71).

Discussion: Plasma markers of inflammation and complement dysregulation support diagnosis and

outcome prediction in AD and MCI. Further replication is needed before clinical translation.

� 2019 The Authors. Published by Elsevier Inc. on behalf of the Alzheimer’s Association. This is an

open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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1. Introduction

Alzheimer’s disease (AD) is a complex neurodegenera-

tive disorder that develops gradually and progressively,

with symptoms progressing over time from mild forgetful-

ness to severe mental impairment. Early diagnosis is an

essential requirement for effective intervention but is chal-

lenging because of current reliance on clinical observation

and cognitive testing, with diagnosis confirmed postmortem

by demonstrating typical AD brain pathology. Biomarkers of

early disease might address this challenge and are thus an

urgent unmet need.

Currently, cerebrospinal fluid (CSF) levels of amyloid b
(Ab) fragments and hyperphosphorylated or total tau are

the most widely used biomarkers for AD [1,2]; however,

diagnostic accuracy varies between centers [3]. Further-

more, lumbar puncture is invasive and difficult to implement

in the presymptomatic elderly population. The accessibility

and practicability of obtaining peripheral blood to measure

disease biomarkers make this an attractive option for early

diagnosis and large-scale screening. Numerous discovery

studies for blood-based biomarkers of AD have been re-

ported, but validation and replication remain key challenges

and none has yet achieved clinical usefulness [4–7].

Promising candidates do exist, for example, plasma Ab42/
40 ratio and neurofilament light chain [8], but more work

is needed.

Considerable evidence implicates inflammation and

complement dysregulation in AD pathogenesis. Genome-

wide association studies demonstrated strong associations

between AD and common SNPs in the gene encoding the

complement regulator clusterin (CLU) [9]. A second

genome-wide association study replicated the CLU associ-

ation and identified association with an SNP in the CR1

gene, encoding complement receptor 1 (CR1) [10]. These

findings have been robustly replicated in diverse cohorts.
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Furthermore, pathway analysis has highlighted immunity,

inflammation, and complement as key pathways in AD

[11–13]. Other evidence implicating inflammation and

complement includes longitudinal studies demonstrating

that inflammation occurs years before AD onset [14,15],

and cross-sectional studies reporting increased inflamma-

tory markers in early AD [16]. Plasma markers of inflamma-

tion and complement dysregulation may therefore be useful

biomarkers of early AD. Indeed, complement proteins, reg-

ulators, and activation products were altered in AD plasma

and/or CSF [17], and in a systematic review of 21 discovery

or panel-based blood proteomic studies, complement was

the top implicated pathway across the studies [18].

The underpinning hypothesis of this study is that plasma

levels of complement proteins and other inflammatory bio-

markers differ between neurologically normal elderly con-

trols (CTL) and those with mild cognitive impairment

(MCI) and/or AD, between subjects with MCI and those

with AD, and between subjects with MCI destined to rapidly

progress to AD (progressors) and those who will not prog-

ress (nonprogressors). If proven, then the most informative

of these plasma biomarkers can be used to diagnose, stratify,

predict disease progression, and/or demonstrate response to

intervention in MCI and AD. Analytes were selected based

on biological evidence and published studies of inflamma-

tory/complement biomarkers in neurodegeneration. In the

discovery phase, we used singleplex and multiplex solid-

phase enzyme immunoassays to measure 53 proteins

comprising complement components, activation products

and regulators, cytokines and chemokines in a large cohort

comprising AD, MCI, and CTL samples. Proteins demon-

strating association with AD and/or MCI in this discovery

sample set were investigated further in two independent

replication cohorts.

2. Methods

2.1. Study population

Discovery phase samples were from AddNeuroMed, a

cross-European cohort for biomarker discovery, detailed

elsewhere [19,20]. Informed consent was obtained

according to the Declaration of Helsinki (1991), and

protocols and procedures were approved by Institutional

Review Boards at each collection site. We used 720

plasma samples from the cohort: 262 AD, 199 MCI, and

259 CTL, selected based solely on availability of plasma

samples. The replication cohorts comprised (1) 867 plasma

samples (88 AD, 425 MCI, 347 CTL) from European

Medical Information Framework for Alzheimer’s Disease

Multimodal Biomarker Discovery (EMIF-AD MBD), a

cross-European biomarker discovery cohort [21]; (2) 427

plasma samples (105 AD, 69 MCI, 253 CTL) from Mauds-

ley Biomedical Research Centre Dementia Case Registry

(DCR) [22]. In both cases, samples were selected based

solely on availability of plasma; plasma was not collected

from all individuals in the cohorts and stocks had been ex-

hausted for others. Diagnostic categories were created using

similar algorithms in the discovery and replication cohorts

[19–22]. In all cohorts, the definition for CTL was a

normal performance on neuropsychological assessment

(within 1.5 SD of the average for age, gender, and

education). Diagnosis of MCI was made according to the

criteria of Petersen [23], and AD-type dementia was diag-

nosed using the National Institute of Neurological and

Communicative Disorders and Stroke–Alzheimer’s Disease

and Related Disorders Association criteria [24].

Patient data available differed between the cohorts; there-

fore, a minimal clinical data set was collected and harmo-

nized as described [21]; this data set comprised 1)

demographics: age, gender, education; 2) clinical informa-

tion: diagnosis, medication use, comorbidities, family

history of dementia, functional impairment rating; 3) cogni-

tive data: Mini–Mental State Examination, neuropsycholog-

ical testing. Imaging data and CSF samples were not

available for a majority of cases included in the cohorts

and so could not be included in the analyses; however, this

was not considered an issue given that the aim of the work

was to identify plasma markers that correlated with clinical

disease status.

2.2. Discovery phase assays

In the discovery phase, 53 plasma analytes were measured

using commercial and in-house singleplex and multiplex as-

says on all available samples in duplicate from AddNeur-

oMed. Plasma clusterin, soluble complement receptor 2,

C-reactive protein (CRP), colony-stimulating factor 1

(CSF1), and interleukin-23 (IL-23) were determined using

commercially available enzyme-linked immunosorbent as-

says (clusterin, CRP, CSF1, and IL-23 from R&D systems

(Abingdon, UK; cat# DY5874, DY1707, DY216, and

DY5265 B) and soluble complement receptor 2 from Sino

Biological (Beijing, China; cat# SEKA10811); protocols

were as recommended by the manufacturers. Plasma soluble

complement receptor 1 (sCR1), C1-inhibitor (C1inh), C5,

C9, C1q, factor H-related protein 4 (FHR4), factor H (FH)

Y402, and H402 variants were determined using optimized

antibody pairs in in-house enzyme-linked immunosorbent as-

says as described [25]. Ten complement biomarkers were

measured using customized V-plex electrochemilumines-

cence (ECL) immunoassays (MSD; Rockville, Maryland);

antibody pairswere developed and optimized in-house.Multi-

plex 1 comprised abundant analytesC3,C4, factorB (FB), FH,

and factor I (FI).Multiplex 2 comprised low-concentration an-

alytes factor D (FD); the activation fragments Bb, C3a, and

iC3b; and the terminal complement complex (TCC). A cali-

bration curve comprising five-fold dilutions of a mixture of

protein standards was run in duplicate on each plate. ECL

signal was measured on the MESO QuickPlex SQ 120 reader

(MSD). Data acquisition and analysis was performed using

MSD software Discovery workbench 4.0.
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The V-Plex Human Cytokine 30-Plex Kit (MSD; cat#

K15054D) was used to measure cytokines/chemokines.

The kit comprises three 10-plex panels: V-plex Proinflam-

matory Panel 1 measures interferon g, interleukin (IL)-1b,
IL-2, IL-4, IL-6, IL-8, IL-10, IL-12p70, IL-13, and tumor

necrosis factor (TNF)-a in samples diluted 1:2 in proprietary

buffer; V-plex cytokine panel 1 measures granulocyte-

macrophage colony-stimulating factor, IL-1a, IL-5, IL-7,

IL-12/IL-23p40, IL-15, IL-16, IL-17A, TNF-b, and vascular
endothelial growth factor–A in samples diluted 1:4; V-

plex chemokine panel 1 measures eotaxin-1, macrophage

inflammatory protein (MIP)-1b, eotaxin-3, thymus- and

activation-regulated chemokine (TARC; CCL17), inter-

feron-g-inducible protein (IP)-10, MIP-1a, IL-8, MCP-1,

macrophage-derived chemokine, and MCP-4 in samples

diluted 1:4. All assays were performed according to manu-

facturer’s instructions using ECL detection as mentioned

previously. Intra-assay and interassay limits for coefficients

of variation (CV) were set at 25%, and data for samples with

a CV above this were not included in the analysis.

2.3. Replication phase assays

The analytes selected from the discovery phase for repli-

cation were sCR1, FB, FH, MCP-1, and eotaxin-1; FI, TCC,

clusterin, and C4 were also included to replicate previously

reported association of these biomarkers with MCI progres-

sion [26], not tested in AddNeuroMed cohort.

MSD U-PLEX custom multiplexing was used in replica-

tion phase to build bespoke panels. Plasma levels of low

abundance analytes sCR1, MCP-1, eotaxin-1, and TCC

were measured in one panel with samples diluted 1:2;

plasma levels of high abundance analytes FB, FH, FI, clus-

terin, and C4 were measured in a second panel with samples

diluted 1:2000. Assays were performed according to the

manufacturer’s instructions using ECL detection. Both

panels were run on all EMIF-AD MBD and DCR samples

in duplicate. Intra-assay and interassay limits for CV were

set at 25% as above.

2.4. Statistical analysis

All statistical tests and analyses were performed with R

software, including ggplot2, caret, and pROC packages. In

all cases, P , .05 was considered statistically significant.

2.4.1. Individual analytes

Protein concentrations were determined automatically

from standard curves plotted using GraphPad Prism5. Values

were adjusted for recruitment center and plasma storage time

as described [27] using a generalized linear regression model.

All subsequent analyses were performed on generalized

linear regression model–adjusted data and log-transformed

to achieve normal distribution. In the discovery phase, associ-

ation of individual analytes with disease status was tested us-

ing the Kruskal-Wallis test. Pairwise comparisons were then

performed using the Dunn test with Bonferroni correction.

For 12 analytes (eotaxin-3, granulocyte-macrophage col-

ony-stimulating factor, IL-1b, IL-2, IL-4, IL-5, IL-7, IL-10,
IL12p70, IL-13, MIP-1a, TNFb), many samples were below

assay detection limits; thesewere analyzed as binary variables

(positive or negative) and tested for association with disease

status by chi-square test.

2.4.2. Identification of optimal analyte sets

Stepwise logistic regression (SLR) was used to find the

analyte set that optimally distinguished between diagnostic

groups: CTL versus AD, CTL versus MCI, MCI versus

AD. Demographic covariates age, gender, and apolipopro-

tein E (APOE) genotype were controlled for and included

in models as potential predictors. For each comparison,

the data set was randomly split into training (80%) and

validation (20%) sets. The training set was used to select

variables and fit the model which was then tested on the

validation set using receiver operating curve (ROC) anal-

ysis. The models developed for AD versus CTL and MCI

versus AD were tested in the replication cohorts using

ROC analysis.

2.4.3. Markers of disease progression

Data on MCI progression to AD were only available in a

subset of the EMIF-ADMBD; in this case, SLR was used to

find the analyte set that best distinguished individuals who

subsequently progressed from MCI to AD from nonprogres-

sors. Because the MCI conversion group was relatively

small, stepwise selection was performed on the complete

data set, followed by ROC analysis with leave-one-out

cross-validation. To avoid overfitting, 500 replications of

stepwise models were performed on random data subsets,

each comprising a training set (80%) for selection and a vali-

dation set (20%) for model testing, and ROC analysis per-

formed for each replication. The variables most often

selected and significant were identified.

3. Results

3.1. Individual analytes differ between discovery set

groups

Of the 53 plasma proteins measured in the discovery set,

10 demonstrated significant differences between clinical

groups (Table 1). Pairwise comparisons (Dunn test with

Bonferroni correction) showed (1) for AD versus CTL,

increased C4 and eotaxin-1, decreased sCR1, C5, and

CRP; (2) for MCI versus CTL, increased FH, C3, and

MCP-1, decreased C5 and MIP-1b; (3) for AD versus

MCI, increased eotaxin-1 and MIP-1b, decreased FI, C3,

CRP, MCP-1 (Table 1; Fig. 1). Of the 12 MSD cytokine/che-

mokine panel analytes analyzed categorically, none showed

significant differences between clinical groups.
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3.2. Developing models to differentiate groups

3.2.1. AD from CTL

Stepwise selection demonstrated strong interdependence

between some analytes and revealed other analytes that

significantly and independently contributed to distinguish-

ing clinical groups. SLR modeling was used to identify the

most predictive set of analytes. A model combining FB,

FH, sCR1, MCP-1, and eotaxin-1 with covariates age and

APOε4 status best differentiated AD versus CTL. FH and

eotaxin-1 were higher and FB, CR1, and MCP-1 were lower

in AD compared to CTL. Diagnostic accuracy in distin-

guishing CTL from AD was moderate (AUC 0.79); 77% of

samples were predicted correctly with 84% sensitivity and

70% specificity (Fig. 2A; Table 2). This model was tested

in the replication cohorts. In EMIF-AD MBD, comprising

867 plasma samples (88 AD, 425 MCI, 347 CTL), the model

strongly replicated (AD vs. CTL; AUC 0.81), correctly pre-

dicting 76% of samples with 73% sensitivity and 77% spec-

ificity. In DCR, comprising 427 samples (105 AD, 69 MCI,

253 CTL), the model performed poorly (AD vs. CTL; AUC

0.58).

3.2.2. AD from MCI

A model combining sCR1, MCP-1, and eotaxin-1 with

age and APOε4 optimally differentiated AD and MCI

(AUC 0.74), correctly predicting 71% of samples with

75% sensitivity and 66% specificity (Fig. 2B; Table 2). FH

and eotaxin-1 were higher and FB, sCR1, and MCP-1

were lower in AD compared to MCI samples. The model

replicated in EMIF-ADMBD (AUC 0.67), correctly predict-

ing 61% of samples with 71% sensitivity and 59% speci-

ficity. In DCR samples, the model performed poorly (AUC

0.56).

3.2.3. MCI from CTL

The optimal model to differentiate MCI from CTL

comprised 15 analytes, each providing weak and indepen-

dent predictive value. Smaller analyte sets were poor predic-

tors (details not shown). We concluded that there was no

reliable and practicable biomarker set from the analytes

measured that distinguished MCI and CTL.

3.2.4. MCI progressors from nonprogressors

Baseline samples from 285 individuals with MCI who

had either progressed to AD when reassessed 12 months

later (progressors; 55) or had remained stable over this

period (nonprogressors; 230) were compared in EMIF-AD

MBD. Of the nine analytes measured, only two, FB (higher

in progressors) and FH (lower in progressors), were signifi-

cantly different between progressors and nonprogressors. A

model combining these two analytes with age, the only sig-

nificant covariable, was moderately predictive (AUC 0.71);

67% of samples correctly predicted, sensitivity 71%, speci-

ficity 67% (Table 3). In the 500 replications of stepwise

models, age and FH were always selected and significant

499 times, FB was selected 414 times and significant 309

times. No other analyte was selected more than 67 times.

The average AUC for the 500 replications was 0.69 (SD

0.09).

4. Discussion

A plasma biomarker or biomarker set that aids early diag-

nosis, stratification, prediction of disease course, or moni-

toring response to therapy in AD is a major unmet need.

Numerous studies have sought plasma biomarkers relevant

to AD, and many putative plasma protein biomarkers have

been proposed (reviewed in the study by Baird et al. [28]);

however, none has been robustly replicated. Currently, clini-

cians rely on neuropsychological testing, a time-consuming

tool, to diagnose MCI and AD, with confirmation requiring

either expensive neuroimaging (MRI or PET scanning) or

invasive lumbar puncture to measure CSF markers of amy-

loid or tau pathology. These methods are not suitable either

for high-volume screening of presymptomatic individuals,

Table 1

Ten analytes associated with clinical state in the discovery phase

Analyte

Mean 6 SD

CTL (n 5 259)

Mean 6 SD

MCI (n 5 199)

Mean 6 SD

AD (n 5 262)

P value

KW test

P value

AD vs. CTL

P value

AD vs. MCI

P value

MCI vs. CTL

FH (mg/ml) 241.5 (56.4) 262.7 (71.8) 258.2 (73.0) .01 ns ns .004

FI (mg/ml) 31.5 (7.0) 32.2 (6.9) 31.0 (7.5) .049 ns .03 ns

sCR1 (ng/ml) 11.52 (3.03) 11.43 (3.10) 10.88 (3.01) .043 .03 ns ns

C3 (mg/ml) 1042.7 (553.4) 1105.0 (377.4) 1004.2 (435.4) ,.0001 ns .0001 .001

C4 (mg/ml) 351.6 (129.6) 370.8 (136.2) 386.1 (159.3) .01 .01 ns ns

C5 (mg/ml) 84.9 (16.2) 81.0 (14.7) 79.8 (14.7) .001 .0004 ns .03

CRP (ng/ml) 996.8 (1145.6) 841.3 (711.1) 761.1 (810.5) .007 .01 .09 ns

MCP-1 (pg/ml) 63.1 (22.5) 68.5 (24.5) 63.0 (20.4) .009 ns .006 .002

Eotaxin-1 (pg/ml) 141.6 (65.0) 143.3 (66.2) 162.5 (78.7) ,.0001 ,.0001 ,.0001 ns

MIP-1b (pg/ml) 58.9 (29.2) 58.1 (55.2) 63.1 (56.2) .007 ns .006 .002

Abbreviations: AD, Alzheimer’s disease; CRP, C-reactive protein; CTL, control; KW, Kruskal-Wallis; MCI, mild cognitive impairment; ns, not significant;

SD, standard deviation.

NOTE. Ten analytes showed statistically significant differences in concentration between clinical groups in the discovery phase. The table shows means and

standard deviations, KW test P value, and Dunn test P values for each analyte.
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required to identify early disease, or frequent monitoring

required in assessing response to interventions. Biomarkers

informative in CSF are currently difficult to measure in

plasma in the routine context [29]. Recent technological ad-

vances have improved assay sensitivity, delivering ultrasen-

sitive assays capable of measuring specific amyloid markers

Fig. 1. Ten biomarkers associated with diagnosis in the discovery phase. Boxplots for the 10 biomarkers which demonstrated significant differences in con-

centrations between diagnostic groups (Kruskal-Wallis). The P values shown are from the Dunn test with Bonferroni correction for pairwise comparisons;

bars indicate significant differences. For graphical convenience and better visualization, high outliers were removed from the boxplots, although all are included

in the Kruskal-Wallis analysis. Abbreviation: CRP, C-reactive protein.

A.R. Morgan et al. / Alzheimer’s & Dementia 15 (2019) 776-787 781



in plasma [7,8,29–31]. Promising as these developments are,

ultrasensitive assays require expensive purpose-built equip-

ment beyond routine laboratory capacity and currently too

costly for large-scale screening.

In this study, we set out to identify plasma analyte sets,

measurable using simple multiplex enzyme-linked immuno-

sorbent assay, that differentiated AD, MCI, and CTL groups.

We took as a starting point the powerful multisource evi-

dence that inflammation and complement dysregulation

were important components of AD pathogenesis [13–17].

In the discovery phase, we used multiplex and singleplex

immunoassays to measure 53 proteins relevant to

inflammation and complement dysregulation in a large,

well-validated cohort, and identify proteins and/or protein

sets associated with AD and/or MCI clinical diagnosis.

Ten of the 53 proteins were significantly different between

groups of different clinical status; a heterogeneous group

of analytes including three complement components (C3,

C4, C5), two complement regulators (FH, FI), a soluble

form of a complement receptor (sCR1), a classical marker

of inflammation (CRP), and three chemokines (eotaxin-1,

MCP-1, and MIP-1b). Stepwise selection demonstrated

strong interdependence between some analytes, anticipated

given that all were selected for relevance to complement

and/or inflammation; however, several analytes significantly

and independently contributed to distinguishing between

clinical groups. To identify the most predictive set, models

that tested all combinations of analytes and covariables

were generated. The best model for AD versus CTL,

including analytes sCR1, FB, FH, eotaxin-1, and MCP-1,

with covariables age and APOE status, showed an AUC of

0.79 in the discovery cohort, considered “highly predictive”

[32]. The best model for AD versus MCI, including analytes

sCR1, eotaxin-1, and MCP-1 with covariables age and

APOE status, yielded an AUC of 0.74, considered “moder-

ately predictive” [32].

Both models were tested in two independent replication

cohorts. In the larger of these, EMIF-AD MBD (comprising

867 samples: 88 AD, 425 MCI, 347 CTL), both models

replicated, AD versus CTL strongly (AUC 0.81), and AD

versus MCI moderately (AUC 0.67). In the smaller DCR

cohort (105 AD, 69 MCI, 253 CTL), neither model repli-

cated well (AUC 0.58 for AD vs. CTL; 0.56 for AD vs.

MCI). The reasons for failure to replicate in the DCR cohort

are unclear; however, this is a relatively small sample set,

60% of which are CTL samples. The strong replication of

both models in the larger multicenter EMIF-AD MBD

cohort provokes us to suggest that the analytes identified

here, perhaps with other promising biomarkers, might pro-

vide a basis for a focused, relatively simple and inexpensive

plasma multiplex test that could aid diagnosis. Further

research in large, well-characterized cohorts to replicate,

validate, and extend these findings is needed to deliver a reli-

able screening tool.

With the exception of FB, each of the analytes selected

in the models has previously been associated with AD.

Fig. 2. Receiver operating characteristic (ROC) curves for models distin-

guishing clinical state or predicting progression. ROC curves were gener-

ated representing models which best differentiated AD from controls (A)

or AD from MCI (B) in the discovery phase and predicted progression or

nonprogression in the EMIF cohort (C). In each case, the area under the

curve (AUC) for the selected model was calculated, and compared to that

for the significant covariables alone, age 1 APOE ε4 in (A) and (B), age

alone in (C). (A) Shows that a model including FB, FH, sCR1, MCP-1,

and eotaxin-1, along with the covariables age and APOE genotype, differen-

tiated AD and CTL with a predictive power (AUC) of 0.79 (red line), signif-

icantly better than the covariables alone (AUC 0.65; blue line). (B) Shows

that a model including sCR1, MCP-1, and eotaxin-1, along with the covari-

ables age and APOE genotype, differentiated AD and MCI with AUC of

0.74 (red line), significantly better than the covariables alone (AUC 0.63;

blue line). (C) Shows that a model including FB and FH along with age

as covariable differentiated MCI progressors and nonprogressors with

AUC of 0.71 (red line). The predictive power was significantly greater

than that obtained using the covariable alone (AUC 0.66; blue line). Abbre-

viations: AD, Alzheimer’s disease; APOE, apolipoprotein E; CTL, control;

MCI, mild cognitive impairment.
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sCR1 (reduced in AD vs. CTL and MCI) had not been

measured in AD plasma previously but was reported higher

in CSF in AD versus CTL [33]. FH (increased in AD vs.

CTL) was reported higher in AD plasma in several studies

[4,34,35], although some reported no difference between

clinical groups [36]. Eotaxin-1 (higher in AD plasma vs.

CTL and MCI) and MCP-1 (lower in AD plasma vs. CTL

and MCI), both C–C chemokine family members, were re-

ported as plasma markers of AD status in several studies

[37–42]; elevated MCP-1 and eotaxin-1 correlated with

greater memory impairment in MCI/AD [43].

Several studies have reported plasma biomarkers predic-

tive of MCI progression to AD. An 18-analyte biomarker

signature dominated by cytokines/chemokines predicted

progression within 5 years with 81% accuracy [44]. A 60-

analyte set was predictive of MCI progression to AD with

79% accuracy [45], and a 10-analyte panel, including com-

plement and inflammatory proteins, predicted MCI progres-

sion to AD with 87% accuracy [22]. Our published study

identified a model comprising three analytes, FI, TCC, and

clusterin that, with APOε4 status, predicted progression

(AUC 0.86) [26]. To date, none of these findings have

been independently replicated. Of the cohorts available to

us, only EMIF-AD MBD included data on progression of

MCI cases to AD; 19% of informative MCI cases had pro-

gressed to AD a year after sampling. Of the 10 analytes

measured, two were significantly different; FB levels were

higher and FH lower in MCI progressors versus nonprogres-

sors. These two biomarkers together with age (the only sig-

nificant covariable) predicted MCI conversion with AUC

0.71. Notably, FB is a key enzyme in the complement ampli-

fication loop while FH is the critical loop regulator;

increased FB and decreased FH seen in progressors would

favor amplification, suggesting that amplification loop dys-

regulation might predispose to progression. We were unable

to replicate this finding in other cohorts as data on conver-

sion were not available. Although the model reported for

predicting MCI conversion differs from our previous report

[26], both identified markers of complement activation/regu-

lation, implying that complement dysregulation is a critical

predictor of progression. This finding resonates with preclin-

ical data suggesting that complement and microglial activa-

tion play important roles as mediators of neurotoxicity in

AD [46]. Further research to replicate and validate markers

of complement dysregulation as predictors of progression is

required.

There are limitations to the present study. The cohorts

were collected across a wide range of centers and without

stringent attention to sampling, separation, and storage pro-

tocols that are important for complement and other immunity

assays; however, despite this suboptimal aspect, character-

istic of real-world sample collections, strongly predictive

marker sets emerged, increasing the likelihood of utility in

clinical practice. For several analytes, the commercial cyto-

kine/chemokine platform was insufficiently sensitive for

detection in plasma, highlighting the need for better assays.

For most subjects in the cohorts analyzed, imaging data

and/or CSF samples were not available and thus could not

be included in the analysis. Despite these limitations, we

Table 2

Multivariate models for distinguishing between diagnostic groups

Predictor

AD vs. CTL AD vs. MCI

LogOR (95% CI) P value LogOR (95% CI) P value

Intercept 213.49 (227.16; 0.17) .05 23.62 (27.89; 0.65) .10

Age 0.07 (0.04; 0.12) .00005 0.06 (0.02; 0.10) .002

1 APOE ε4 0.74 (0.22; 1.25) .005 0.41 (20.10; 0.92) .12

2 APOE ε4 2.03 (1.0; 3.05) .0001 1.99 (0.86; 3.13) .0006

Eotaxin-1 1.56 (0.78; 2.35) .00009 1.74 (0.97; 2.52) .00001

MCP-1 21.31 (22.21; 0.40) .0005 21.91 (22.82; 21.01) .00003

sCR1 20.90 (21.85; 0.06) .067 21.36 (22.30; 20.41) .005

FH 2.85 (1.42; 4.27) .00009 n/a n/a

FB 22.33 (23.60; 21.06) .0003 n/a n/a

Abbreviations: AD, Alzheimer’s disease; APOE, apolipoprotein E; CTL, control; MCI, mild cognitive impairment; logOR (95% CI), log odds ratio of the

predictor and their 95% confidence interval; Intercept, log odds ratio if the predictors are equal to 0; 1 APOE E4/2 APOE E4: log odds ratio of possessing 1 or 2

ε4 alleles compared to possessing no ε4 allele; n/a, predictors not included in the given model.

NOTE. The table summarizes the selected logistic regression models derived from the AddNeuroMed discovery cohort, AD versus CTL in the left panel, AD

versus MCI in the right panel.

Table 3

Multivariate model for distinguishing between MCI converters and

nonconverters

Predictor LogOR (95% CI) P value

Intercept 14.13 (25.77; 34.01) .16

Age 0.08 (0.04; 0.13) .00019

FH 24.15 (26.24; 22.05) .00011

FB 2.66 (0.72; 4.60) .0072

Abbreviations: MCI, mild cognitive impairment; logOR (95% CI), log

odds ratio of the predictor and the 95% confidence interval; Intercept, log

odds ratio if the predictors are equal to 0.

NOTE. The table summarizes the selected logistic regression model

derived from informative samples in the EMIF cohort for MCI converters

versus nonconverters.
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discovered and replicated evidence that neuroinflammation

and complement dysregulation are pathological drivers in

AD and thus potential therapeutic targets. Several observa-

tional studies have reported that long-term use of nonste-

roidal anti-inflammatory drugs is associated with reduced

risk of dementia [47,48]; however, randomized controlled

trials and systematic reviews found little or no benefit of

nonsteroidal anti-inflammatory drugs [49,50]. Perhaps,

interventions in these latter studies were commenced too

late to confer benefit. Inflammatory biomarkers to stratify

and select patients for targeted early intervention might

benefit future trials of anti-inflammatory interventions. Tar-

geting complement dysregulation is, as yet, untested in

AD. Although current anticomplement drugs are tailored

for ultrarare diseases, numerous new drugs are progressing

to the clinic, including for therapy of common inflammatory

diseases, for example, age-related macular degeneration

[51]. Anticomplement drugs designed to access brain and tar-

geted to preclinical or early MCI patients identified and

selected using markers of complement dysregulation may

offer a new pathway to prevention of AD [52].
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RESEARCH IN CONTEXT

1. Systematic review: The authors reviewed the current

literature using traditional (e.g., Google Scholar;

PubMed) sources to identify published studies utiliz-

ing inflammation-relevant plasma biomarkers, in

particular complement markers, for diagnosis, stag-

ing, or risk prediction of Alzheimer’s disease. They

noted the dearth of replicated plasma biomarkers and

small sample size in many published studies.

2. Interpretation: Our findings identify sets of inflam-

matory biomarkers in plasma that distinguish clinical

subgroups (controls: mild cognitive impairment;

Alzheimer’s disease) in a large multicenter cohort;

these replicate in an independent cohort. Markers

predictive of progression were also identified in the

latter cohort.

3. Future directions: The findings require further repli-

cation in additional and larger independent cohorts,

before development as a clinically viable multi-

plexed test for diagnosis and patient stratification.
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