13 research outputs found

    Erratum: The Belle II Physics Book (Progress of Theoretical and Experimental Physics (2019) 2019 (123C01) DOI: 10.1093/ptep/ptz106)

    Get PDF

    The Belle II Physics Book

    Get PDF
    We present the physics program of the Belle II experiment, located on the intensity frontier SuperKEKB e+ee^+e^- collider. Belle II collected its first collisions in 2018, and is expected to operate for the next decade. It is anticipated to collect 50/ab of collision data over its lifetime. This book is the outcome of a joint effort of Belle II collaborators and theorists through the Belle II theory interface platform (B2TiP), an effort that commenced in 2014. The aim of B2TiP was to elucidate the potential impacts of the Belle II program, which includes a wide scope of physics topics: B physics, charm, tau, quarkonium, electroweak precision measurements and dark sector searches. It is composed of nine working groups (WGs), which are coordinated by teams of theorist and experimentalists conveners: Semileptonic and leptonic B decays, Radiative and Electroweak penguins, phi_1 and phi_2 (time-dependent CP violation) measurements, phi_3 measurements, Charmless hadronic B decay, Charm, Quarkonium(like), tau and low-multiplicity processes, new physics and global fit analyses. This book highlights "golden- and silver-channels", i.e. those that would have the highest potential impact in the field. Theorists scrutinised the role of those measurements and estimated the respective theoretical uncertainties, achievable now as well as prospects for the future. Experimentalists investigated the expected improvements with the large dataset expected from Belle II, taking into account improved performance from the upgraded detector.Comment: 689 page

    Mapping out the space for new physics with leptonic and semileptonic B(c) decays

    No full text
    © 2021, The Author(s).Decays of B mesons with leptons in the final state offer an interesting laboratory to search for possible effects of physics from beyond the Standard Model. In view of puzzling patterns in experimental data, the violation of lepton flavour universality is an interesting option. We present a strategy, utilising ratios of leptonic and semileptonic B decays, where the elements | Vub| and | Vcb| of the Cabibbo–Kobayashi–Maskawa (CKM) matrix cancel, to constrain the short-distance coefficients of (pseudo)-scalar, vector and tensor operator contributions. The individual branching ratios allow us then to extract also the CKM matrix elements, even in the presence of new-physics contributions. Bounds on unmeasured leptonic and semileptonic decays offer important additional constraints. In our comprehensive analysis, we give also predictions for decays which have not yet been measured in a variety of scenarios

    On new physics in Delta Gamma(d)

    No full text
    Motivated by the recent measurement of the dimuon asymmetry by the DØ collaboration, which could be interpreted as an enhanced decay rate difference in the neutral B d -meson system, we investigate the possible size of new-physics contributions to ΔΓ d . In particular, we perform model-independent studies of non-standard effects associated to the dimension-six current-current operators (d̄p) (p̄′b) with p, -rfpag′ = u, c as well as (d̄p) (τ̄τ). In both cases we find that for certain flavour or Lorentz structures of the operators sizeable deviations of ΔΓ d away from the Standard Model expectation cannot be excluded in a model-independent fashion. © 2014 The Author(s)
    corecore