5 research outputs found

    The specialist predator protects termite colonies from generalist predators

    Get PDF
    Contains fulltext : 143439.pdf (publisher's version ) (Open Access)BACKGROUND: Children of parents with a substance use disorder (CPSUD) are at increased risk for developing problematic substance use later in life. Endophenotypes may help to clarify the mechanism behind this increased risk. However, substance use and externalizing symptoms may confound the relation between dysregulated physiological stress responding and familial risk for substance use disorders (SUDs). METHODS: We examined whether heart rate (HR) responses differed between CPSUDs and controls. Participants (aged 11-20years) were CPSUDs (N=75) and controls (N=363), semi-matched on the basis of sex, socioeconomic status, and ethnicity. HR was measured continuously during a psychosocial stress procedure. Substance use and externalizing symptoms were self-reported and mother-reported, respectively. RESULTS: A piecewise, mixed-effects model was fit for HR across the stress procedure, with fixed effects for HR reactivity and HR recovery. CPSUDs showed a blunted HR recovery. CPSUDs reported drinking more frequently, were more likely to use tobacco daily, were more likely to report ever use of cannabis and used cannabis more frequently, and exhibited more externalizing symptoms. These variables did not confound the relation between familial risk for SUDs and a blunted HR recovery. CONCLUSION: Our findings suggest dysregulated autonomic nervous system (ANS) responding in CPSUDs and contribute to the accumulating evidence for ANS dysregulation as a potential endophenotype for SUDs.9 p

    Dissecting the genetics of chronic mucus hypersecretion in smokers with and without COPD

    Get PDF
    Smoking is a notorious risk factor for chronic mucus hypersecretion (CMH). CMH frequently occurs in chronic obstructive pulmonary disease (COPD). The question arises whether the same single-nucleotide polymorphisms (SNPs) are related to CMH in smokers with and without COPD. We performed two genome-wide association studies of CMH under an additive genetic model in male heavy smokers (≥20 pack-years) with COPD (n = 849, 39.9% CMH) and without COPD (n = 1348, 25.4% CMH), followed by replication and meta-analysis in comparable populations, and assessment of the functional relevance of significantly associated SNPs. Genome-wide association analysis of CMH in COPD and non-COPD subjects yielded no genome-wide significance after replication. In COPD, our top SNP (rs10461985, p = 5.43×10(-5)) was located in the GDNF-AS1 gene that is functionally associated with the GDNF gene. Expression of GDNF in bronchial biopsies of COPD patients was significantly associated with CMH (p = 0.007). In non-COPD subjects, four SNPs had a p-value <10(-5) in the meta-analysis, including a SNP (rs4863687) in the MAML3 gene, the T-allele showing modest association with CMH (p = 7.57×10(-6), OR 1.48) and with significantly increased MAML3 expression in lung tissue (p = 2.59×10(-12)). Our data suggest the potential for differential genetic backgrounds of CMH in individuals with and without COPD

    Dissecting the genetics of chronic mucus hypersecretion in smokers with and without COPD

    No full text
    Smoking is a notorious risk factor for chronic mucus hypersecretion (CMH). CMH frequently occurs in chronic obstructive pulmonary disease (COPD). The question arises whether the same single-nucleotide polymorphisms (SNPs) are related to CMH in smokers with and without COPD. We performed two genome-wide association studies of CMH under an additive genetic model in male heavy smokers (≥20 pack-years) with COPD (n=849, 39.9% CMH) and without COPD (n=1348, 25.4% CMH), followed by replication and meta-analysis in comparable populations, and assessment of the functional relevance of significantly associated SNPs. Genome-wide association analysis of CMH in COPD and non-COPD subjects yielded no genome-wide significance after replication. In COPD, our top SNP (rs10461985, p=5.43×10-5) was located in the GDNF-AS1 gene that is functionally associated with the GDNF gene. Expression of GDNF in bronchial biopsies of COPD patients was significantly associated with CMH (p=0.007). In non-COPD subjects, four SNPs had a p-value <10-5 in the meta-analysis, including a SNP (rs4863687) in the MAML3 gene, the T-allele showing modest association with CMH (p=7.57×10-6, OR 1.48) and with significantly increased MAML3 expression in lung tissue (p=2.59×10-12). Our data suggest the potential for differential genetic backgrounds of CMH in individuals with and without COPD
    corecore