15 research outputs found

    Palaeogenomic analysis of black rat (Rattus rattus) reveals multiple European introductions associated with human economic history

    Get PDF
    The distribution of the black rat (Rattus rattus) has been heavily influenced by its association with humans. The dispersal history of this non-native commensal rodent across Europe, however, remains poorly understood, and different introductions may have occurred during the Roman and medieval periods. Here, in order to reconstruct the population history of European black rats, we first generate a de novo genome assembly of the black rat. We then sequence 67 ancient and three modern black rat mitogenomes, and 36 ancient and three modern nuclear genomes from archaeological sites spanning the 1st-17th centuries CE in Europe and North Africa. Analyses of our newly reported sequences, together with published mitochondrial DNA sequences, confirm that black rats were introduced into the Mediterranean and Europe from Southwest Asia. Genomic analyses of the ancient rats reveal a population turnover in temperate Europe between the 6th and 10th centuries CE, coincident with an archaeologically attested decline in the black rat population. The near disappearance and re-emergence of black rats in Europe may have been the result of the breakdown of the Roman Empire, the First Plague Pandemic, and/or post-Roman climatic cooling.Peer reviewe

    Biochemical and genetic characterization of a murine class Kappa glutathione S-transferase

    No full text
    The class Kappa family of glutathione S-transferases (GSTs) currently comprises a single rat subunit (rGSTK1), originally isolated from the matrix of liver mitochondria [Harris, Meyer, Coles and Ketterer (1991) Biochem. J. 278, 137-141; Pemble, Wardle and Taylor (1996) Biochem. J. 319, 749-754]. In the present study, an expressed sequence tag (EST) clone has been identified which encodes a mouse class Kappa GST (designated mGSTK1). The EST clone contains an open reading frame of 678 bp, encoding a protein composed of 226 amino acid residues with 86% sequence identity with the rGSTK1 polypeptide. The mGSTK1 and rGSTK1 proteins have been heterologously expressed in Escherichia coli and purified by affinity chromatography. Both mouse and rat transferases were found to exhibit GSH-conjugating and GSH-peroxidase activities towards model substrates. Analysis of expression levels in a range of mouse and rat tissues revealed that the mRNA encoding these enzymes is expressed predominantly in heart, kidney, liver and skeletal muscle. Although other soluble GST isoenzymes are believed to reside primarily within the cytosol, subcellular fractionation of mouse liver demonstrates that this novel murine class Kappa GST is associated with mitochondrial fractions. Through the use of bioinformatics, the genes encoding the mouse and rat class Kappa GSTs have been identified. Both genes comprise eight exons, the protein coding region of which spans approx. 4.3 kb and 4.1 kb of DNA for mGSTK1 and rGSTK1 respectively. This conservation in primary structure, catalytic properties, tissue-specific expression, subcellular localization and gene structure between mouse and rat class Kappa GSTs indicates that they perform similar physiological functions. Furthermore, the association of these enzymes with mitochondrial fractions is consistent with them performing a specific conserved biological role within this organelle
    corecore