153 research outputs found

    Voluntary motor drive: possible reduction in Tourette syndrome

    Get PDF
    Electrophysiologically, Tourette syndrome (TS) is characterized by shortened cortical silent period (CSP), reflecting decreased motor inhibition. However, voluntary versus involuntary aspects of inhibitory functions in TS are not well understood. Hence, investigating voluntary motor drive (VMD) could help to elucidate this issue. A group of 14 healthy adolescents was compared with subjects of same age suffering from TS with (N = 6) and without (N = 6) presence of distal tics. Basic resting and active motor thresholds (RMT and AMT, respectively) as well as suprathreshold transcranial magnetic stimulation-conditioned RMT and AMT were determined during the CSP. The difference between AMT and RMT was considered as VMD quantum. No group-differences were found in RMT or AMT. Subjects with distal tics showed reduced VMD compared to healthy controls while patients without distal tics did not differ from controls. In the second half of CSP, patients with distal tics showed also diminished VMD compared to tic-patients without distal tics. The findings support the notion, that TS shows possible reduction of VMD and is associated with central motor threshold alterations confined to the very motor networks related to the tics observed

    Transcranial magnetic stimulation for the treatment of epilepsy

    Get PDF
    BACKGROUND: Epilepsy is a highly prevalent neurological condition characterised by repeated unprovoked seizures with various aetiologies. Although antiepileptic medications produce clinical improvement in many individuals, nearly a third of individuals have drug‐resistant epilepsy that carries significant morbidity and mortality, and even individuals who have clinical improvement from antiepileptic medications often report iatrogenic symptoms. There remains a need for non‐invasive and more effective therapies for this population. Transcranial magnetic stimulation (TMS) uses electromagnetic coils to excite or inhibit neurons, with repetitive pulses at low‐frequency producing an inhibitory effect that could conceivably reduce cortical excitability associated with epilepsy. This is an updated version of the original Cochrane Review published in 2016. OBJECTIVES: To assess the evidence for the use of TMS in individuals with drug‐resistant epilepsy compared with other available treatments in reducing seizure frequency, improving quality of life, reducing epileptiform discharges, antiepileptic medication use, and side effects. SEARCH METHODS: For the latest update, we searched the Cochrane Register of Studies (CRS Web) and MEDLINE (Ovid 1946 to 2 June 2020). CRS Web includes randomised or quasi‐randomised controlled trials from PubMed, Embase, ClinicalTrials.gov, the World Health Organization International Clinical Trials Registry Platform (WHO ICTRP), the Cochrane Central Register of Controlled Trials (CENTRAL), and the specialised registers of Cochrane Review Groups including Epilepsy. SELECTION CRITERIA: We included randomised controlled trials that were double‐blinded, single‐blinded, or unblinded, and placebo controlled, no treatment, or active controlled, which used repetitive transcranial magnetic stimulation (rTMS) without restriction of frequency, coil, duration or intensity on participants with drug‐resistant epilepsy. DATA COLLECTION AND ANALYSIS: We extracted information from each trial including methodological data; participant demographics including baseline seizure frequency, type of epileptic drugs taken; intervention details and intervention groups for comparison; potential biases; and outcomes and time points, primarily change in seizure frequency or responder rates, as well as quality of life and epileptiform discharges, adverse effects, and changes in medication use. MAIN RESULTS: The original search revealed 274 records from the databases that after selection provided seven full‐text relevant studies for inclusion. The latest search identified 179 new records from the databases that after evaluation against the inclusion and exclusion criteria provided one additional full‐text relevant study. The eight included studies (241 participants) were all randomised trials; seven of the studies were blinded. Methodological and design information in the included studies was unclear, particularly relating to randomisation and allocation concealment methods. We were not able to combine the results of the trials in analysis due to differences in the studies' designs. For the current update, two of the eight studies analysed showed a statistically significant reduction in seizure rate from baseline (72% and 78.9% reduction of seizures per week from the baseline rate, respectively), whilst the other six studies showed no statistically significant difference in seizure frequency following rTMS treatment compared with controls (low‐certainty evidence). One study assessed quality of life and found that more participants showed improvement in quality of life scores with active treatments compared to the sham treatment, but this only involved seven participants (very low‐certainty evidence). Four studies evaluated our secondary endpoint of mean number of epileptic discharges, three of which showed a statistically significant reduction in discharges after active rTMS treatment. Adverse effects were uncommon in the studies and typically involved headache, dizziness, and tinnitus; however increased seizure frequency did occur in a small number of individuals. The included trials reported no significant changes in medication use. Overall the risk of bias was either low or unclear, and the certainty of the evidence was low to very low. AUTHORS' CONCLUSIONS: Overall, we judged the certainty of evidence for the primary outcomes of this review to be low to very low. We found some evidence to suggest that rTMS is safe but some adverse events were experienced. The variability in technique and outcome reporting prevented meta‐analysis, and the evidence for efficacy of rTMS for seizure reduction is still lacking, despite reasonable evidence that it is effective at reducing epileptiform discharges

    Slow (1 Hz) repetitive transcranial magnetic stimulation (rTMS) induces a sustained change in cortical excitability in patients with Parkinson's disease

    Get PDF
    Objective: Low-frequency ( lt = 1 Hz) rTMS (LF-rTMS) can reduce excitability in the underlying cortex and/or promote inhibition. In patients with Parkinson's disease (PD) several TMS elicited features of motor corticospinal physiology suggest presence of impaired inhibitory mechanisms. These include shortened silent period (SP) and slightly steeper input-output (I-O) curve of motor evoked potential (MEP) size than in normal controls. However, studies of LF-rTMS effects on inhibitory mechanisms in PD are scarce. Objective: In this companion paper to the clinical paper describing effects of four consecutive days of LF-rTMS on dyskinesia in PD (Filipovic et al., 2009), we evaluate the delayed (24 h) effects of the LF-rTMS treatment on physiological measures of excitability of the motor cortex in the same patients. There are very few studies of physiological follow up of daily rTMS treatments. Methods: Nine patients with PD in Hoehn and Yahr stages 2 or 3 and prominent medication-induced dyskinesia were studied. This was a placebo-controlled, crossover study, with two treatment arms, "real" rTMS and "sham" rTMS (placebo). In each of the treatment arms, rTMS (1800 pulses; 1 Hz rate; intensity of the real stimuli just-below the active motor threshold) was delivered over the motor cortex for four consecutive days. Motor cortex excitability was evaluated at the beginning of the study and the next day following each of the four-day rTMS series (real and sham) with patients first in the practically defined "off" state, following 12 h withdrawal of medication, and subsequently in a typical "on" state following usual morning medication dose. Results: The SP was significantly longer following real rTMS in comparison to both baseline and sham rTMS. The effect was independent from the effects of dopaminergic treatment. There was no difference in MEP size, rest and active motor threshold. The I-O curve, recorded from the relaxed muscle, showed a trend towards diminished slope in comparison to baseline, but the difference was not significant. There was no consistent correlation between prolongation of SP and concomitant reduction in dyskinesia following real rTMS. Conclusions: Low-frequency rTMS delivered over several consecutive days changes the excitability of motor cortex by increasing the excitability of inhibitory circuits. The effects persist for at least a day after rTMS. Significance: The results confirm the existence of a residual after-effect of consecutive daily applications of rTMS that might be relevant to the clinical effect that was observed in this group of patients and could be further exploited for potential therapeutic uses

    Lamotrigine and levetiracetam exert a similar modulation of TMS-evoked EEG potentials

    Get PDF
    Objective: Antiepileptic drug (AED) treatment failures may occur because there is insufficient drug in the brain or because of a lack of relevant therapeutic response. Until now there is no possibility to measure these factors. It has been recently shown that the combination of transcranial magnetic stimulation and electroencephalography (TMS-EEG) can measure the effects of drugs in healthy volunteers. TMS-evoked EEG potentials (TEPs) comprise a series of positive and negative deflections which can be specifically modulated by drugs with a well-known mode of action targeting inhibitory neurotransmission. Hence, we hypothesised that TMS-EEG can detect effects of two widely used AEDs, lamotrigine and levetiracetam, in healthy volunteers. Methods: Fifteen healthy subjects participated in a pseudo randomized, placebo-controlled, double-blind, crossover design, using a single oral dose of lamotrigine (300mg) and levetiracetam (3000mg). TEPs were recorded before and 120 min after drug intake and the effects of drugs on the amplitudes of TEP components were statistically evaluated. Results: A non-parametric cluster-based permutation analysis of TEP amplitudes showed that both AEDs increased the amplitude of the negative potential at 45ms after stimulation (N45) and suppressed the positive peak at 180ms (P180). This is the first demonstration of AED-induced modulation of TMS-EEG measures. Significance: Despite the different mechanism of action that lamotrigine and levetiracetam exert at molecular level, both AEDs impact the TMS-EEG response in a similar way. These TMS-EEG fingerprints observed in healthy subjects are candidate predictive markers of treatment response in patients on monotherapy with lamotrigine and levetiracetam

    The Effect of Lamotrigine and Levetiracetam on TMS-Evoked EEG Responses Depends on Stimulation Intensity

    Get PDF
    The combination of transcranial magnetic stimulation and electroencephalography (TMS-EEG) has uncovered underlying mechanisms of two anti-epileptic medications: levetiracetam and lamotrigine. Despite their different mechanism of action, both drugs modulated TMS-evoked EEG potentials (TEPs) in a similar way. Since both medications increase resting motor threshold (RMT), the current aim was to examine the similarities and differences in post-drug TEPs, depending on whether stimulation intensity was adjusted to take account of post-drug RMT increase. The experiment followed a placebo controlled, double blind, crossover design, involving a single dose of either lamotrigine or levetiracetam. When a drug-induced increase of RMT occurred, post-drug measurements involved two blocks of stimulations, using unadjusted and adjusted stimulation intensity. A cluster based permutation analysis of differences in TEP amplitude between adjusted and unadjusted stimulation intensity showed that lamotrigine induced a stronger modulation of the N45 TEP component compared to levetiracetam. Results highlight the impact of adjusting stimulation intensity

    Epilepsy: major advances in treatment

    No full text
    • 

    corecore