303 research outputs found

    Democratic Legitimacy of Politically Unaccountable Administrative Authorities in Comparative Constitutional Law

    Get PDF
    Uz temeljna ustavna načela vladavine prava i podjele vlasti, načelo kolektivne i pojedinačne ministarske odgovornosti jamac je demokratskog legitimiteta uprave, koji leĆŸi u neprekinutom lancu delegacije i odgovornosti od birača prema parlamentu, od parlamenta do ministra te od ministra kroz sve razine uprave do razine najbliĆŸe građanima. U ovom radu razmatra se ustavnopravna osnovanost demokratskog legitimiteta neovisnih regulatornih tijela, s posebnim osvrtom na načelo ministarske odgovornosti. Poredbeno se obrađuju primjeri iz europskih drĆŸava, gdje neovisnost regulatornih tijela ne zadire u temeljna ustavna načela. Zaključno se nastoji utvrditi u kojoj mjeri formalno utvrđena politička neovisnost jamči takvu neovisnost u materijalnom smislu te se razmatraju neke od najutjecajnijih teorija koje o svrsi osnivanja neovisnih regulatornih tijela nudi politička znanost.In addition to the fundamental constitutional principles of the rule of law and separation of powers, the principle of collective and individual ministerial responsibility is the guarantee of the democratic legitimacy of administration that lies in the unbroken chains of delegation and accountability from voters to Parliament, from Parliament to the minister, and from the minister through all levels of administration, to the level closest to citizens. This paper examines the theoretical constructions of the democratic legitimacy of independent regulatory authorities from the constitutionalist point of view, with particular reference to the principle of ministerial responsibility. It further discusses comparative examples from European countries where the independence of the regulatory authorities does not violate fundamental constitutional principles. In conclusion, this paper seeks to determine the extent to which formally established political independence guarantees such independence in the material sense, bearing in mind some of the most influential theories on the purpose of the establishment of independent regulatory authoritie

    Association of Moderate Coffee Intake with Self-Reported Diabetes among Urban Brazilians

    Get PDF
    Coffee has been associated with reductions in the risk of non-communicable chronic diseases (NCCD), including diabetes mellitus. Because differences in food habits are recognizable modifying factors in the epidemiology of diabetes, we studied the association of coffee consumption with type-2 diabetes in a sample of the adult population of the Federal District, Brazil. This cross-sectional study was conducted by telephone interview (n = 1,440). A multivariate analysis was run controlling for socio-behavioural variables, obesity and family antecedents of NCCD. A hierarchical linear regression model and a Poisson regression were used to verify association of type-2 diabetes and coffee intake. The independent variables which remained in the final model, following the hierarchical inclusion levels, were: first level—age and marital status; second level—diabetes and dyslipidaemias in antecedents; third level—cigarette smoking, supplement intake, body mass index; and fourth level—coffee intake (≀100 mL/d, 101 to 400 mL/day, and >400 mL/day). After adjusting hierarchically for the confounding variables, consumers of 100 to 400 mL of coffee/day had a 2.7% higher (p = 0.04) prevalence of not having diabetes than those who drank less than 100 mL of coffee/day. Compared to coffee intake of ≀100 mL/day, adults consuming >400 mL of coffee/day showed no statistically significant difference in the prevalence of diabetes. Thus, moderate coffee intake is favourably associated with self-reported type-2 diabetes in the studied population. This is the first study to show a relationship between coffee drinking and diabetes in a Brazilian population

    Measurement of the cosmic ray spectrum above 4×10184{\times}10^{18} eV using inclined events detected with the Pierre Auger Observatory

    Full text link
    A measurement of the cosmic-ray spectrum for energies exceeding 4×10184{\times}10^{18} eV is presented, which is based on the analysis of showers with zenith angles greater than 60∘60^{\circ} detected with the Pierre Auger Observatory between 1 January 2004 and 31 December 2013. The measured spectrum confirms a flux suppression at the highest energies. Above 5.3×10185.3{\times}10^{18} eV, the "ankle", the flux can be described by a power law E−γE^{-\gamma} with index Îł=2.70±0.02 (stat)±0.1 (sys)\gamma=2.70 \pm 0.02 \,\text{(stat)} \pm 0.1\,\text{(sys)} followed by a smooth suppression region. For the energy (EsE_\text{s}) at which the spectral flux has fallen to one-half of its extrapolated value in the absence of suppression, we find Es=(5.12±0.25 (stat)−1.2+1.0 (sys))×1019E_\text{s}=(5.12\pm0.25\,\text{(stat)}^{+1.0}_{-1.2}\,\text{(sys)}){\times}10^{19} eV.Comment: Replaced with published version. Added journal reference and DO

    Energy Estimation of Cosmic Rays with the Engineering Radio Array of the Pierre Auger Observatory

    Full text link
    The Auger Engineering Radio Array (AERA) is part of the Pierre Auger Observatory and is used to detect the radio emission of cosmic-ray air showers. These observations are compared to the data of the surface detector stations of the Observatory, which provide well-calibrated information on the cosmic-ray energies and arrival directions. The response of the radio stations in the 30 to 80 MHz regime has been thoroughly calibrated to enable the reconstruction of the incoming electric field. For the latter, the energy deposit per area is determined from the radio pulses at each observer position and is interpolated using a two-dimensional function that takes into account signal asymmetries due to interference between the geomagnetic and charge-excess emission components. The spatial integral over the signal distribution gives a direct measurement of the energy transferred from the primary cosmic ray into radio emission in the AERA frequency range. We measure 15.8 MeV of radiation energy for a 1 EeV air shower arriving perpendicularly to the geomagnetic field. This radiation energy -- corrected for geometrical effects -- is used as a cosmic-ray energy estimator. Performing an absolute energy calibration against the surface-detector information, we observe that this radio-energy estimator scales quadratically with the cosmic-ray energy as expected for coherent emission. We find an energy resolution of the radio reconstruction of 22% for the data set and 17% for a high-quality subset containing only events with at least five radio stations with signal.Comment: Replaced with published version. Added journal reference and DO

    Measurement of the Radiation Energy in the Radio Signal of Extensive Air Showers as a Universal Estimator of Cosmic-Ray Energy

    Full text link
    We measure the energy emitted by extensive air showers in the form of radio emission in the frequency range from 30 to 80 MHz. Exploiting the accurate energy scale of the Pierre Auger Observatory, we obtain a radiation energy of 15.8 \pm 0.7 (stat) \pm 6.7 (sys) MeV for cosmic rays with an energy of 1 EeV arriving perpendicularly to a geomagnetic field of 0.24 G, scaling quadratically with the cosmic-ray energy. A comparison with predictions from state-of-the-art first-principle calculations shows agreement with our measurement. The radiation energy provides direct access to the calorimetric energy in the electromagnetic cascade of extensive air showers. Comparison with our result thus allows the direct calibration of any cosmic-ray radio detector against the well-established energy scale of the Pierre Auger Observatory.Comment: Replaced with published version. Added journal reference and DOI. Supplemental material in the ancillary file

    A Synoptical Classification of the Bivalvia (Mollusca)

    Get PDF
    The following classification summarizes the suprageneric taxono-my of the Bivalvia for the upcoming revision of the Bivalvia volumes of the Treatise on Invertebrate Paleontology, Part N. The development of this classification began with Carter (1990a), Campbell, Hoeks-tra, and Carter (1995, 1998), Campbell (2000, 2003), and Carter, Campbell, and Campbell (2000, 2006), who, with assistance from the United States National Science Foundation, conducted large-scale morphological phylogenetic analyses of mostly Paleozoic bivalves, as well as molecular phylogenetic analyses of living bivalves. Dur-ing the past several years, their initial phylogenetic framework has been revised and greatly expanded through collaboration with many students of bivalve biology and paleontology, many of whom are coauthors. During this process, all available sources of phylogenetic information, including molecular, anatomical, shell morphological, shell microstructural, bio- and paleobiogeographic as well as strati-graphic, have been integrated into the classification. The more recent sources of phylogenetic information include, but are not limited to, Carter (1990a), Malchus (1990), J. Schneider (1995, 1998a, 1998b, 2002), T. Waller (1998), Hautmann (1999, 2001a, 2001b), Giribet and Wheeler (2002), Giribet and Distel (2003), Dreyer, Steiner, and Harper (2003), Matsumoto (2003), Harper, Dreyer, and Steiner (2006), Kappner and Bieler (2006), Mikkelsen and others (2006), Neulinger and others (2006), Taylor and Glover (2006), KĆ™Ă­ĆŸ (2007), B. Morton (2007), Taylor, Williams, and Glover (2007), Taylor and others (2007), Giribet (2008), and Kirkendale (2009). This work has also benefited from the nomenclator of bivalve families by Bouchet and Rocroi (2010) and its accompanying classification by Bieler, Carter, and Coan (2010).This classification strives to indicate the most likely phylogenetic position for each taxon. Uncertainty is indicated by a question mark before the name of the taxon. Many of the higher taxa continue to undergo major taxonomic revision. This is especially true for the superfamilies Sphaerioidea and Veneroidea, and the orders Pectinida and Unionida. Because of this state of flux, some parts of the clas-sification represent a compromise between opposing points of view. Placement of the Trigonioidoidea is especially problematic. This Mesozoic superfamily has traditionally been placed in the order Unionida, as a possible derivative of the superfamily Unionoidea (see Cox, 1952; Sha, 1992, 1993; Gu, 1998; Guo, 1998; Bieler, Carter, & Coan, 2010). However, Chen Jin-hua (2009) summarized evi-dence that Trigonioidoidea was derived instead from the superfamily Trigonioidea. Arguments for these alternatives appear equally strong, so we presently list the Trigonioidoidea, with question, under both the Trigoniida and Unionida, with the contents of the superfamily indicated under the Trigoniida.Fil: Carter, Joseph G.. University of North Carolina; Estados UnidosFil: Altaba, Cristian R.. Universidad de las Islas Baleares; EspañaFil: Anderson, Laurie C.. South Dakota School of Mines and Technology; Estados UnidosFil: Araujo, Rafael. Consejo Superior de Investigaciones Cientificas. Museo Nacional de Ciencias Naturales; EspañaFil: Biakov, Alexander S.. Russian Academy of Sciences; RusiaFil: Bogan, Arthur E.. North Carolina State Museum of Natural Sciences; Estados UnidosFil: Campbell, David. Paleontological Research Institution; Estados UnidosFil: Campbell, Matthew. Charleston Southern University; Estados UnidosFil: Chen, Jin Hua. Chinese Academy of Sciences. Nanjing Institute of Geology and Palaeontology; RepĂșblica de ChinaFil: Cope, John C. W.. National Museum of Wales. Department of Geology; Reino UnidoFil: Delvene, Graciela. Instituto GeolĂłgico y Minero de España; EspañaFil: Dijkstra, Henk H.. Netherlands Centre for Biodiversity; PaĂ­ses BajosFil: Fang, Zong Jie. Chinese Academy of Sciences; RepĂșblica de ChinaFil: Gardner, Ronald N.. No especifica;Fil: Gavrilova, Vera A.. Russian Geological Research Institute; RusiaFil: Goncharova, Irina A.. Russian Academy of Sciences; RusiaFil: Harries, Peter J.. University of South Florida; Estados UnidosFil: Hartman, Joseph H.. University of North Dakota; Estados UnidosFil: Hautmann, Michael. PalĂ€ontologisches Institut und Museum; SuizaFil: Hoeh, Walter R.. Kent State University; Estados UnidosFil: Hylleberg, Jorgen. Institute of Biology; DinamarcaFil: Jiang, Bao Yu. Nanjing University; RepĂșblica de ChinaFil: Johnston, Paul. Mount Royal University; CanadĂĄFil: Kirkendale, Lisa. University Of Wollongong; AustraliaFil: Kleemann, Karl. Universidad de Viena; AustriaFil: Koppka, Jens. Office de la Culture. Section d’ArchĂ©ologie et PalĂ©ontologie; SuizaFil: KĆ™Ă­ĆŸ, Jiƙí. Czech Geological Survey. Department of Sedimentary Formations. Lower Palaeozoic Section; RepĂșblica ChecaFil: Machado, Deusana. Universidade Federal do Rio de Janeiro; BrasilFil: Malchus, Nikolaus. Institut CatalĂ  de Paleontologia; EspañaFil: MĂĄrquez Aliaga, Ana. Universidad de Valencia; EspañaFil: Masse, Jean Pierre. Universite de Provence; FranciaFil: McRoberts, Christopher A.. State University of New York at Cortland. Department of Geology; Estados UnidosFil: Middelfart, Peter U.. Australian Museum; AustraliaFil: Mitchell, Simon. The University of the West Indies at Mona; JamaicaFil: Nevesskaja, Lidiya A.. Russian Academy of Sciences; RusiaFil: Özer, Sacit. Dokuz EylĂŒl University; TurquĂ­aFil: Pojeta, John Jr.. National Museum of Natural History; Estados UnidosFil: Polubotko, Inga V.. Russian Geological Research Institute; RusiaFil: Pons, Jose Maria. Universitat AutĂČnoma de Barcelona; EspañaFil: Popov, Sergey. Russian Academy of Sciences; RusiaFil: Sanchez, Teresa Maria. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas; Argentina. Universidad Nacional de CĂłrdoba; ArgentinaFil: Sartori, AndrĂ© F.. Field Museum of National History; Estados UnidosFil: Scott, Robert W.. Precision Stratigraphy Associates; Estados UnidosFil: Sey, Irina I.. Russian Geological Research Institute; RusiaFil: Signorelli, Javier Hernan. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro CientĂ­fico TecnolĂłgico Conicet - Centro Nacional PatagĂłnico; ArgentinaFil: Silantiev, Vladimir V.. Kazan Federal University; RusiaFil: Skelton, Peter W.. Open University. Department of Earth and Environmental Sciences; Reino UnidoFil: Steuber, Thomas. The Petroleum Institute; Emiratos Arabes UnidosFil: Waterhouse, J. Bruce. No especifica;Fil: Wingard, G. Lynn. United States Geological Survey; Estados UnidosFil: Yancey, Thomas. Texas A&M University; Estados Unido

    Immunogenic Salivary Proteins of Triatoma infestans: Development of a Recombinant Antigen for the Detection of Low-Level Infestation of Triatomines

    Get PDF
    Chagas disease, caused by Trypanosoma cruzi, is a neglected disease with 20 million people at risk in Latin America. The main control strategies are based on insecticide spraying to eliminate the domestic vectors, the most effective of which is Triatoma infestans. This approach has been very successful in some areas. However, there is a constant risk of recrudescence in once-endemic regions resulting from the re-establishment of T. infestans and the invasion of other triatomine species. To detect low-level infestations of triatomines after insecticide spraying, we have developed a new epidemiological tool based on host responses against salivary antigens of T. infestans. We identified and synthesized a highly immunogenic salivary protein. This protein was used successfully to detect differences in the infestation level of T. infestans of households in Bolivia and the exposure to other triatomine species. The development of such an exposure marker to detect low-level infestation may also be a useful tool for other disease vectors
    • 

    corecore