127 research outputs found
Smouldering fire signatures in peat and their implications for palaeoenvironmental reconstructions
AbstractPeatland ecosystems are valued as natural archives of past climatic and vegetation changes and as such their study is essential for palaeoenvironmental reconstructions over millennia. Fires in peatlands are dominated by smouldering combustion which is the self-sustained, slow, low temperature, flameless form of burning. Most studies on peat fires to date have focused on ignition conditions, C losses or atmospheric emissions, but there is a significant gap in the understanding of the evolution of organic matter (OM) following smouldering. A key feature of smouldering fires is that they consume most of the pyrogenic char produced. Consequently, it may be that most smouldering fires are simply not visible using standard palaeontological techniques. Here we present the possibility of identifying palaeofires by following their physical and chemical signature along a peat profile. We have undertaken laboratory experiments on Sphagnum peat columns and measured physical, chemical and spectroscopic changes of OM features induced by smouldering on samples of varying moisture content. We reveal that there is a higher production of aromatic and condensed molecules, an increase of the total N and a decrease of the C/N ratio, besides significant variations of pH, electrical conductivity and ash content. Several of these changes have, in previous studies, been taken to be indicative of alterations in atmospheric dust deposition and climate-driven changes (e.g., vegetation, water table fluctuation, decomposition and mineralization processes), but are also produced by smouldering fires. Our results imply that smouldering fires should therefore also be considered in climatic and floral reconstructions drawn from peat cores and that these additional physical and chemical changes may serve to enhance our understanding of palaeofire histories
Fluorescence properties of humic acid interaction products with s-triazine and bipyridilium herbicides and their Cu complexes: a multivariate approach
Purpose: Excitation–emission matrices spectroscopy (EEMS) of soil humic acids (HAs) contains large amount of information on their properties, as well as on the dynamics related to their intra- and inter-molecular interactions. The objective of this research was (i) to show that EEMS represents a useful tool to investigate the molecular and mechanistic aspects of HA adsorbing capacity towards atrazine (A) and paraquat (P) with or without Cu2+ ions and (ii) to evaluate if additional information on these mechanisms can be obtained by combining EEMS with principal component analysis (PCA). Materials and methods: HAs have been isolated from soil samples collected in a citrus field at three locations, within the plant rows (HAa); between the rows (HAb) and in a adjacent, control soil (HAc). Interaction products were obtained between each HA and A and P, with or without Cu ions. Elemental analysis and Fourier-transorm Infrared Spectroscopy were applied to support fluorescence data. Fluorescence spectra were recorded on aqueous solutions, and fluorescence intensity (FI) values were normalized using a quinine sulphate standard. PCA analysis was performed using the software STATGRAPHICS Centurion XV.I. Results and discussion: The EEM spectra of the three unreacted HAs are characterized by the presence of two fluorophores α and β, in the region of longer wavelengths pairs (EEWP). The EEM spectra of the HA-A interaction products are featured by the same two fluorophores, with FI values decreased of about 50%, whereas those of the HA-P interaction products show a unique peak, γ, at intermediate EEWP. Finally, the EEM spectra of HA-A-Cu2+ show, with respect to HA-A samples, a blue shift of the α peak with an additional decrease of FI values (about 60%) and the disappearance of the peaks β, whereas those of HA-P-Cu2+ feature, in comparison with those of HA-P, a small red-shift of the peak γ. PCA data suggest that Cu ions do not affect the interaction mechanism between HA and P, whereas it appears to exercise a strong influence on interaction between HA and A. Conclusions: The results obtained indicate that EEMS allows direct measurements of the adsorbing capacity of HA towards atrazine and paraquat. Additional information obtained by PCA analysis show that Cu ions behave like a good antagonist in preventing the formation of ionic bonds between HA and atrazine, whereas Cu is not able to affect the prevalent mechanism of HA interaction with paraquat, which is a charge-transfer bond
- …