170 research outputs found

    Poor transcript-protein correlation in the brain: negatively correlating gene products reveal neuronal polarity as a potential cause

    Get PDF
    International audienceTranscription, translation, and turnover of transcripts and proteins are essential for cellular function. The contribution of those factors to protein levels is under debate, as transcript levels and cognate protein levels do not necessarily correlate due to regulation of translation and protein turnover. Here we propose neuronal polarity as a third factor that is particularly evident in the CNS, leading to considerable distances between somata and axon terminals. Consequently, transcript levels may negatively correlate with cognate protein levels in CNS regions, i.e., transcript and protein levels behave reciprocally. To test this hypothesis, we performed an integrative inter‐omics study and analyzed three interconnected rat auditory brainstem regions (cochlear nuclear complex, CN; superior olivary complex, SOC; inferior colliculus, IC) and the rest of the brain as a reference. We obtained transcript and protein sets in these regions of interest (ROIs) by DNA microarrays and label‐free mass spectrometry, and performed principal component and correlation analyses. We found 508 transcript|protein pairs and detected poor to moderate transcript|protein correlation in all ROIs, as evidenced by coefficients of determination from 0.34 to 0.54. We identified 57‐80 negatively correlating gene products in the ROIs and intensively analyzed four of them for which the correlation was poorest. Three cognate proteins (Slc6a11, Syngr1, Tppp) were synaptic and hence candidates for a negative correlation because of protein transport into axon terminals. Thus, we systematically analyzed the negatively correlating gene products. Gene ontology analyses revealed overrepresented transport/synapse‐related proteins, supporting our hypothesis. We present 30 synapse/transport‐related proteins with poor transcript|protein correlation. In conclusion, our analyses support that protein transport in polar cells is a third factor that influences the protein level and, thereby, the transcript|protein correlation

    Proteome-wide characterization of the RNA-binding protein RALY-interactome using the in vivo-biotinylation-pulldown-quant (iBioPQ) approach

    Get PDF
    RALY is a member of the heterogeneous nuclear ribonucleoproteins, a family of RNA-binding proteins generally involved in many processes of mRNA metabolism. No quantitative proteomic analysis of RALY-containing ribonucleoparticles (RNPs) has been performed so far, and the biological role of RALY remains elusive. Here, we present a workflow for the characterization of RALY's interaction partners, termed iBioPQ, that involves in vivo biotinylation of biotin acceptor peptide (BAP)-fused protein in the presence of the prokaryotic biotin holoenzyme synthetase of BirA so that it can be purified using streptavidin-coated magnetic beads, circumventing the need for specific antibodies and providing efficient pulldowns. Protein eluates were subjected to tryptic digestion and identified using data-independent acquisition on an ion-mobility enabled high-resolution nanoUPLC-QTOF system. Using label-free quantification, we identified 143 proteins displaying at least 2-fold difference in pulldown compared to controls. Gene Ontology overrepresentation analysis revealed an enrichment of proteins involved in mRNA metabolism and translational control. Among the most abundant interacting proteins, we confirmed RNA-dependent interactions of RALY with MATR3, PABP1 and ELAVL1. Comparative analysis of pulldowns after RNase treatment revealed a protein-protein interaction of RALY with eIF4AIII, FMRP, and hnRNP-C. Our data show that RALY-containing RNPs are much more heterogeneous than previously hypothesized

    Soluble Triggering Receptor Expressed on Myeloid Cells 1 Is Released in Patients with Stable Chronic Obstructive Pulmonary Disease

    Get PDF
    Chronic obstructive pulmonary disease (COPD) is increasingly recognized as a systemic disease that is associated with increased serum levels of markers of systemic inflammation. The triggering receptor expressed on myeloid cells 1 (TREM-1) is a recently identified activating receptor on neutrophils, monocytes, and macrophage subsets. TREM-1 expression is upregulated by microbial products such as the toll-like receptor ligand lipoteichoic acid of Gram-positive or lipopolysaccharides of Gram-negative bacteria. In the present study, sera from 12 COPD patients (GOLD stages I–IV, FEV1 51 ± 6%) and 10 healthy individuals were retrospectively analyzed for soluble TREM-1 (sTREM-1) using a newly developed ELISA. In healthy subjects, sTREM-1 levels were low (median 0.25 ng/mL, range 0–5.9 ng/mL). In contrast, levels of sTREM-1 in sera of COPD patients were significantly increased (median 11.68 ng/mL, range 6.2–41.9 ng/mL, P<.05). Furthermore, serum levels of sTREM-1 showed a significant negative correlation with lung function impairment. In summary, serum concentrations of sTREM-1 are increased in patients with COPD. Prospective studies are warranted to evaluate the relevance of sTREM-1 as a potential marker of the disease in patients with COPD

    Rho-A prenylation and signaling link epithelial homeostasis to intestinal inflammation

    Get PDF
    Although defects in intestinal barrier function are discussed as a key pathogenic factor in patients with inflammatory bowel diseases (IBD), the molecular pathways driving disease-specific alterations of intestinal epithelial cells (IECs) are largely unknown. Here, we performed a novel approach to characterize the transcriptome of IECs from IBD patients using a genome wide approach. We observed disease-specific alterations in IECs with markedly impaired Rho-A signaling in active IBD patients. Localization of epithelial Rho-A was shifted to the cytosol in IBD where Rho-A activation was suppressed due to reduced expression of the Rho-A prenylation enzyme GGTase-I. The functional relevance of this pathway was highlighted by studies in mice with conditional gene targeting in which deletion of RhoA or GGTase-I in IECs caused spontaneous chronic intestinal inflammation with accumulation of granulocytes and CD4+ T cells. This phenotype was associated with cytoskeleton rearrangement and aberrant cell shedding ultimately leading to loss of epithelial integrity and subsequent inflammation. These findings uncover deficient prenylation of Rho-A as a key player in the pathogenesis of IBD. As therapeutic triggering of Rho-A signaling suppressed intestinal inflammation in mice with GGTase-I deficient IECs, our findings open new avenues for treatment of epithelial injury and mucosal inflammation in IBD patients

    Dimerization of visinin-like protein 1 is regulated by oxidative stress and calcium and is a pathological hallmark of amyotrophic lateral sclerosis

    Get PDF
    AbstractRedox control of proteins that form disulfide bonds upon oxidative challenge is an emerging topic in the physiological and pathophysiological regulation of protein function. We have investigated the role of the neuronal calcium sensor protein visinin-like protein 1 (VILIP-1) as a novel redox sensor in a cellular system. We have found oxidative stress to trigger dimerization of VILIP-1 within a cellular environment and identified thioredoxin reductase as responsible for facilitating the remonomerization of the dimeric protein. Dimerization is modulated by calcium and not dependent on the myristoylation of VILIP-1. Furthermore, we show by site-directed mutagenesis that dimerization is exclusively mediated by Cys187. As a functional consequence, VILIP-1 dimerization modulates the sensitivity of cells to an oxidative challenge. We have investigated whether dimerization of VILIP-1 occurs in two different animal models of amyotrophic lateral sclerosis (ALS) and detected soluble VILIP-1 dimers to be significantly enriched in the spinal cord from phenotypic disease onset onwards. Moreover, VILIP-1 is part of the ALS-specific protein aggregates. We show for the first time that the C-terminus of VILIP-1, containing Cys187, might represent a novel redox-sensitive motif and that VILIP-1 dimerization and aggregation are hallmarks of ALS. This suggests that VILIP-1 dimers play a functional role in integrating the cytosolic calcium concentration and the oxidative status of the cell. Furthermore, a loss of VILIP-1 function owing to protein aggregation in ALS could be relevant in the pathophysiology of the disease

    New cysteine protease inhibitors : electrophilic (het)arenes and unexpected prodrug identification for the trypanosoma protease rhodesain

    Get PDF
    Electrophilic (het)arenes can undergo reactions with nucleophiles yielding π- or Meisenheimer (σ-) complexes or the products of the SNAr addition/elimination reactions. Such building blocks have only rarely been employed for the design of enzyme inhibitors. Herein, we demonstrate the combination of a peptidic recognition sequence with such electrophilic (het)arenes to generate highly active inhibitors of disease-relevant proteases. We further elucidate an unexpected mode of action for the trypanosomal protease rhodesain using NMR spectroscopy and mass spectrometry, enzyme kinetics and various types of simulations. After hydrolysis of an ester function in the recognition sequence of a weakly active prodrug inhibitor, the liberated carboxylic acid represents a highly potent inhibitor of rhodesain (Ki = 4.0 nM). The simulations indicate that, after the cleavage of the ester, the carboxylic acid leaves the active site and re-binds to the enzyme in an orientation that allows the formation of a very stable π-complex between the catalytic dyad (Cys-25/His-162) of rhodesain and the electrophilic aromatic moiety. The reversible inhibition mode results because the SNAr reaction, which is found in an alkaline solvent containing a low molecular weight thiol, is hindered within the enzyme due to the presence of the positively charged imidazolium ring of His-162. Comparisons between measured and calculated NMR shifts support this interpretation

    Naphthoquinones as covalent reversible inhibitors of cysteine proteases : studies on inhibition mechanism and kinetics

    Get PDF
    The facile synthesis and detailed investigation of a class of highly potent protease inhibitors based on 1,4-naphthoquinones with a dipeptidic recognition motif (HN-l-Phe-l-Leu-OR) in the 2-position and an electron-withdrawing group (EWG) in the 3-position is presented. One of the compound representatives, namely the acid with EWG = CN and with R = H proved to be a highly potent rhodesain inhibitor with nanomolar affinity. The respective benzyl ester (R = Bn) was found to be hydrolyzed by the target enzyme itself yielding the free acid. Detailed kinetic and mass spectrometry studies revealed a reversible covalent binding mode. Theoretical calculations with different density functionals (DFT) as well as wavefunction-based approaches were performed to elucidate the mode of action

    Mast cell-derived mediators promote murine neutrophil effector functions

    Get PDF
    Mast cells are able to trigger life-saving immune responses in murine models for acute inflammation. In such settings, several lines of evidence indicate that the rapid and protective recruitment of neutrophils initiated by the release of mast cell-derived pro-inflammatory mediators is a key element of innate immunity. Herein, we investigate the impact of mast cells on critical parameters of neutrophil effector function. In the presence of activated murine bone marrow-derived mast cells, neutrophils freshly isolated from bone marrow rapidly lose expression of CD62L and up-regulate CD11b, the latter being partly driven by mast cell-derived TNF and GM-CSF. Mast cells also strongly enhance neutrophil phagocytosis and generation of reactive oxygen species. All these phenomena partly depend on mast cell-derived TNF and to a greater extend on GM-CSF. Furthermore, spontaneous apoptosis of neutrophils is greatly diminished due to the ability of mast cells to deliver antiapoptotic GM-CSF. Finally, we show in a murine model for acute lung inflammation that neutrophil phagocytosis is impaired in mast cell-deficient Kit W-sh /Kit W-sh mice but can be restored upon mast cell engraftment. Thus, a previously underrated feature of mast cells is their ability to boost neutrophil effector functions in immune response

    REGGAE: a novel approach for the identification of key transcriptional regulators

    Get PDF
    Motivation: Transcriptional regulators play a major role in most biological processes. Alterations in their activities are associated with a variety of diseases and in particular with tumor development and progres sion. Hence, it is important to assess the effects of deregulated regulators on pathological processes. Results: Here, we present REGulator-Gene Association Enrichment (REGGAE), a novel method for the identification of key transcriptional regulators that have a significant effect on the expression of a given set of genes, e.g. genes that are differentially expressed between two sample groups. REGGAE uses a Kolmogorov–Smirnov-like test statistic that implicitly combines associations be tween regulators and their target genes with an enrichment approach to prioritize the influence of transcriptional regulators. We evaluated our method in two different application scenarios, which demonstrate that REGGAE is well suited for uncovering the influence of transcriptional regulators and is a valuable tool for the elucidation of complex regulatory mechanisms

    EGFL7 loss correlates with increased VEGF-D expression, upregulating hippocampal adult neurogenesis and improving spatial learning and memory

    Get PDF
    Correction: Volume: 80 Issue: 8 DOI: 10.1007/s00018-023-04835-3 Article Number: 201 Published: AUG 2023Neural stem cells reside in the subgranular zone, a specialized neurogenic niche of the hippocampus. Throughout adulthood, these cells give rise to neurons in the dentate gyrus, playing an important role in learning and memory. Given that these core cognitive processes are disrupted in numerous disease states, understanding the underlying mechanisms of neural stem cell proliferation in the subgranular zone is of direct practical interest. Here, we report that mature neurons, neural stem cells and neural precursor cells each secrete the neurovascular protein epidermal growth factor-like protein 7 (EGFL7) to shape this hippocampal niche. We further demonstrate that EGFL7 knock-out in a Nestin-CreERT2-based mouse model produces a pronounced upregulation of neurogenesis within the subgranular zone. RNA sequencing identified that the increased expression of the cytokine VEGF-D correlates significantly with the ablation of EGFL7. We substantiate this finding with intraventricular infusion of VEGF-D upregulating neurogenesis in vivo and further show that VEGF-D knock-out produces a downregulation of neurogenesis. Finally, behavioral studies in EGFL7 knock-out mice demonstrate greater maintenance of spatial memory and improved memory consolidation in the hippocampus by modulation of pattern separation. Taken together, our findings demonstrate that both EGFL7 and VEGF-D affect neurogenesis in the adult hippocampus, with the ablation of EGFL7 upregulating neurogenesis, increasing spatial learning and memory, and correlating with increased VEGF-D expression.Peer reviewe
    corecore