19 research outputs found

    The inflationary trispectrum

    Get PDF
    We calculate the trispectrum of the primordial curvature perturbation generated by an epoch of slow-roll inflation in the early universe, and demonstrate that the non-gaussian signature imprinted at horizon crossing is unobservably small, of order tau_NL < r/50, where r < 1 is the tensor-to-scalar ratio. Therefore any primordial non-gaussianity observed in future microwave background experiments is likely to have been synthesized by gravitational effects on superhorizon scales. We discuss the application of Maldacena's consistency condition to the trispectrum.Comment: 23 pages, 2 diagrams drawn with feynmp.sty, uses iopart.cls. v2, replaced with version accepted by JCAP. Estimate of maximal tau_NL refined in Section 5, resulting in smaller numerical value. Sign errors in Eq. (44) and Eq. (48) corrected. Some minor notational change

    Non-Gaussian Inflationary Perturbations from the dS/CFT Correspondence

    Full text link
    We use the dS/CFT correspondence and bulk gravity to predict the form of the renormalized holographic three-point correlation function of the operator which is dual to the inflaton field perturbation during single-field, slow-roll inflation. Using Maldcaena's formulation of the correspondence, this correlator can be related to the three-point function of the curvature perturbation generated during single-field inflation, and we find exact agreement with previous bulk QFT calculations. This provides a consistency check on existing derivations of the non-Gaussianity from single-field inflation and also yields insight into the nature of the dS/CFT correspondence. As a result of our calculation, we obtain the properly renormalized dS/CFT one-point function, including boundary contributions where derivative interactions are present in the bulk. In principle, our method may be employed to derive the n-point correlators of the inflationary curvature perturbation within the context of (n-1)th-order perturbation theory, rather than nth-order theory as in conventional approaches.Comment: 23 pages, uses iopart.cls. Replaced with version accepted by JCAP; some clarifications in the introduction, and references adde

    Planck intermediate results XVI. Profile likelihoods for cosmological parameters

    Get PDF
    We explore the 2013 Planck likelihood function with a high-precision multi-dimensional minimizer (Minuit). This allows a refinement of the CDM best-fit solution with respect to previously-released results, and the construction of frequentist confidence intervals using profile likelihoods. The agreement with the cosmological results from the Bayesian framework is excellent, demonstrating the robustness of the Planck results to the statistical methodology. We investigate the inclusion of neutrino masses, where more significant differences may appear due to the non-Gaussian nature of the posterior mass distribution. By applying the Feldman-Cousins prescription, we again obtain results very similar to those of the Bayesian methodology. However, the profile-likelihood analysis of the cosmic microwave background (CMB) combination (Planck+WP+highL) reveals a minimum well within the unphysical negative-mass region. We show that inclusion of the Planck CMB-lensing information regularizes this issue, and provide a robust frequentist upper limit \u3c3mv 640:26 eV (95% confidence) from the CMB+lensing+BAO data combination. \ua9 ESO 2014

    Predictions for Nongaussianity from Nonlocal Inflation

    Full text link
    In our previous work the nonlinearity parameter f_NL, which characterizes nongaussianity in the cosmic microwave background, was estimated for a class of inflationary models based on nonlocal field theory. These models include p-adic inflation and generically have the remarkable property that slow roll inflation can proceed even with an extremely steep potential. Previous calculations found that large nongaussianity is possible; however, the technical complications associated with studying perturbations in theories with infinitely many derivatives forced us to provide only an order of magnitude estimate for f_NL. We reconsider the problem of computing f_NL in nonlocal inflation models, showing that a particular choice of field basis and recent progress in cosmological perturbation theory makes an exact computation possible. We provide the first quantitatively accurate computation of the bispectrum in nonlocal inflation, confirming our previous claim that it can be observably large. We show that the shape of the bispectrum in this class of models makes it observationally distinguishable from Dirac-Born-Infeld inflation models.Comment: 26 pages, 5 figures; references added, sign convention for f_NL clarified, minor correction
    corecore