67 research outputs found

    Профессиональный контекст содержания практико-ориентированных задач по химии в условиях профильного обучения

    Get PDF
    ОБРАЗОВАНИЕ МЕДИЦИНСКОЕОБРАЗОВАНИЕ МЕДИЦИНСКОЕ ПОДГОТОВИТЕЛЬНОЕДОВУЗОВСКАЯ ПОДГОТОВКАПРОФИЛЬНОЕ ОБУЧЕНИЕПРАКТИКО-ОРИЕНТИРОВАННЫЕ ЗАДАЧИПРАКТИКО-ОРИЕНТИРОВАННОЕ ОБУЧЕНИ

    Gene Expression Profiling of Peri-Implant Healing of PLGA-Li+ Implants Suggests an Activated Wnt Signaling Pathway In Vivo

    Get PDF
    Bone development and regeneration is associated with the Wnt signaling pathway that, according to literature, can be modulated by lithium ions (Li+). The aim of this study was to evaluate the gene expression profile during peri-implant healing of poly(lactic-co-glycolic acid) (PLGA) implants with incorporated Li+, while PLGA without Li+ was used as control, and a special attention was then paid to the Wnt signaling pathway. The implants were inserted in rat tibia for 7 or 28 days and the gene expression profile was investigated using a genome-wide microarray analysis. The results were verified by qPCR and immunohistochemistry. Histomorphometry was used to evaluate the possible effect of Li+ on bone regeneration. The microarray analysis revealed a large number of significantly differentially regulated genes over time within the two implant groups. The Wnt signaling pathway was significantly affected by Li+, with approximately 34% of all Wnt-related markers regulated over time, compared to 22% for non-Li+ containing (control; Ctrl) implants. Functional cluster analysis indicated skeletal system morphogenesis, cartilage development and condensation as related to Li+. The downstream Wnt target gene, FOSL1, and the extracellular protein-encoding gene, ASPN, were significantly upregulated by Li+ compared with Ctrl. The presence of beta-catenin, FOSL1 and ASPN positive cells was confirmed around implants of both groups. Interestingly, a significantly reduced bone area was observed over time around both implant groups. The presence of periostin and calcitonin receptor-positive cells was observed at both time points. This study is to the best of the authors' knowledge the first report evaluating the effect of a local release of Li+ from PLGA at the fracture site. The present study shows that during the current time frame and with the present dose of Li+ in PLGA implants, Li+ is not an enhancer of early bone growth, although it affects the Wnt signaling pathway

    A bisphosphonatecoating improves the fixation of metal implants in human bone. A randomized trial of dental implants

    No full text
    Abstract Many surgical procedures use metal implants in bone. The clinical results depend on the strength of the bone holding these implants. Our objective was to show that a drug released from the implant surface can improve parameters reflecting the quality or amount of this bone. Sixteen patients received paired dental titanium implants in the maxilla, in a randomized, double-blinded fashion. One implant in each pair was coated with a thin fibrinogen layer containing 2 bisphosphonates. The other implant was untreated. Fixation was evaluated by measurement of resonance frequency (implant stability quotient; ISQ) serving as a proxy for stiffness of the implant-bone construct. Increase in ISQ at 6 months of follow-up was the primary variable. None of the patients had any complications. The resonance frequency increased 6.9 ISQ units more for the coated implants (p = 0.0001; Cohen's d = 1.3). The average difference in increase in ISQ, and the effect size, suggested a clinically relevant improvement. X-ray showed less bone resorption at the margin of the implant both at 2 months (p = 0.012) and at 6 months (p = 0.012). In conclusion, a thin, bisphosphonate-eluting fibrinogen coating might improve the fixation of metal implants in human bone. This might lead to new possibilities for orthopedic surgery in osteoporotic bone and for dental implants. Highlights Dental implants coated with bisphosphonates showed higher resonance frequency. Resonance frequency reflects stiffness of the bone-implant construct. Randomized double-blinded trial with internal controls. First clinical study to show improved implant fixation in bone by coating with a drug

    A bisphosphonate-coating improves the fixation of metal implants in human bone. A randomized trial of dental implants

    No full text
    Many surgical procedures use metal implants in bone. The clinical results depend on the strength of the bone holding these implants. Our objective was to show that a drug released from the implant surface can improve parameters reflecting the quality or amount of this bone. Sixteen patients received paired dental titanium implants in the maxilla, in a randomized, double-blinded fashion. One implant in each pair was coated with a thin fibrinogen layer containing 2 bisphosphonates. The other implant was untreated. Fixation was evaluated by measurement of resonance frequency (implant stability quotient; ISQ) serving as a proxy for stiffness of the implant-bone construct. Increase in ISQ at 6 months of follow-up was the primary variable. None of the patients had any complications. The resonance frequency increased 6.9 ISQ units more for the coated implants (p = 0.0001; Cohens d = 1.3). The average difference in increase in ISQ and the effect size, suggested a clinically relevant improvement. X-ray showed less bone resorption at the margin of the implant both at 2 months (p = 0.012) and at 6 months (p = 0.012). In conclusion, a thin, bisphosphonate-eluting fibrinogen coating might improve the fixation of metal implants in human bone. This might lead to new possibilities for orthopedic surgery in osteoporotic bone and for dental implants.Funding Agencies|Swedish Research Council|VR 2009-6725|</p

    C1q-independent activation of neutrophils by immunoglobulin M-coated surfaces

    No full text
    Neutrophil granulocytes are known to rapidly adhere and undergo frustrated phagocytosis upon contact with immunoglobulin and/or complement protein opsonized artificial surfaces. In this study, we examined the relation between serum protein deposition and human neutrophil activation on hydrophobic glass and silicon model surfaces that were coated with immunoglobulin G or M (IgG/IgM), both initiators of the classical complement pathway. Protein adsorption from normal human serum (NHS) was quantified with null-ellipsometry combined with antibody techniques. The neutrophil oxygen radical production was registered by luminol-amplified chemiluminescence (CL) and the morphology, as well as changes in the content of filamentous actin (F-actin), were documented by fluorescence microscopy. Complement factor 3 (C3) bound to both IgG- and IgM-coated surfaces, but surprisingly C1q was found only on IgG-coated surfaces. Both immunoglobulins triggered complement dependent neutrophil activation. However, CL and F-actin accumulation were found sensitive to the presence of C1q in the serum only at the IgG-coated surface. We suggest that spontaneously adsorbed IgM activates the complement system and interacts with neutrophils by C1q-independent mechanisms
    corecore