10 research outputs found

    The relevance of grated inlets within surface drainage systems in the field of urban flood resilience. A review of several experimental and numerical simulation approaches

    Get PDF
    Urban drainage networks should be designed and operated preferably under open channel flow conditions without flux return, backwater, or overflows. In the case of extreme storm events, urban pluvial flooding is generated by the excess of surface runoff that could not be conveyed by pressurized sewer pipes, due to its limited capacity or, many times, due to the poor efficiency of surface drainage systems to collect uncontrolled overland flow. Generally, the hydraulic design of sewer systems is addressed more for underground networks, neglecting the surface drainage system, although inadequate inlet spacings and locations can cause dangerous flooding with rele-vant socio-economic impacts and the interruption of critical services and urban activities. Several experimental and numerical studies carried out at the Technical University of Catalonia (UPC) and other research institutions demonstrated that the hydraulic efficiency of inlets can be very low under critical conditions (e.g., high circulating overland flow on steep areas). In these cases, the hydraulic efficiency of conventional grated inlets and continuous transverse elements can be around 10–20%. Their hydraulic capacity, expressed in terms of discharge coefficients, shows the same criticism with values quite far from those that are usually used in several project practice phases. The grate clogging phenomenon and more intense storm events produced by climate change could further reduce the inlets’ performance. In this context, in order to improve the flood urban resilience of our cities, the relevance of the hydraulic behavior of surface drainage systems is clear

    Micronucleus frequency and exposure to chemical mixtures in three Colombian mining populations

    Get PDF
    La industria minera colombiana ha experimentado un crecimiento significativo. Dependiendo de la escala y del mineral extraído, se generan mezclas químicas complejas que impactan la salud de las poblaciones ocupacionalmente expuestas y de las comunidades cercanas a los proyectos mineros. Cada vez hay más evidencias que sugieren que la inestabilidad cromosómica (CIN) es un vínculo importante entre el desarrollo de ciertas enfermedades y la exposición a mezclas complejas. Para comprender mejor los efectos de la exposición a mezclas complejas realizamos un estudio de biomonitorización en 407 individuos sanos de cuatro zonas: tres situadas en municipios que explotan sistemas mineros de diferente escala y una zona de referencia sin actividad minera. Se analizaron sistemas de minería a gran, mediana y pequeña escala en Montelíbano (Córdoba), minería artesanal y de pequeña escala (MAPE) en Nechí (Antioquia) y un sistema de minería cerrada en Aranzazu (Caldas). El área de referencia sin actividad minera se estableció en Montería (Córdoba). La ICP-MS midió la exposición multielemental en el cabello, y la NIC se evaluó mediante la técnica de micronúcleos en bloque de citocinesis (MNBN). La exposición a mezclas de elementos químicos fue comparable en trabajadores y residentes de las zonas mineras, pero significativamente superior en comparación con los individuos de referencia. En Montelíbano, el aumento de las frecuencias de MNBN se asoció con la exposición combinada a Se, Hg, Mn, Pb y Mg. Este patrón distintivo difirió significativamente de otras áreas. Específicamente, en Nechí, Cr, Ni, Hg, Se, y Mg emergieron como los principales contribuyentes a las frecuencias elevadas de MNBN. Por el contrario, una combinación de Hg y Ni desempeñó un papel en el aumento de MNBN en Aranzazu. Curiosamente, el Se se correlacionó consistentemente con el aumento de las frecuencias de MNBN en todas las áreas mineras activas. Los elementos químicos en Montelíbano muestran un rango más amplio en comparación con otras zonas mineras, reflejando las características de la minería de alto impacto y a gran escala en la zona. Esta investigación proporciona información valiosa sobre los efectos de la exposición a mezclas químicas, subrayando la importancia de emplear este enfoque en la evaluación del riesgo de las comunidades, especialmente las de las zonas residenciales. © 2023 Los autoresThe Colombian mining industry has witnessed significant growth. Depending on the scale and mineral extracted, complex chemical mixtures are generated, impacting the health of occupationally exposed populations and communities near mining projects. Increasing evidence suggests that chromosomal instability (CIN) is an important link between the development of certain diseases and exposure to complex mixtures. To better understand the effects of exposure to complex mixtures we performed a biomonitoring study on 407 healthy individuals from four areas: three located in municipalities exploiting different-scale mining systems and a reference area with no mining activity. Large, medium, and small-scale mining systems were analyzed in Montelibano (Córdoba), artisanal and small-scale mining (ASGM) in Nechí (Antioquia), and a closed mining system in Aranzazu (Caldas). The reference area with no mining activity was established in Montería (Córdoba). ICP-MS measured multi-elemental exposure in hair, and CIN was evaluated using the cytokinesis-block micronucleus technique (MNBN). Exposure to mixtures of chemical elements was comparable in workers and residents of the mining areas but significantly higher compared to reference individuals. In Montelibano, increased MNBN frequencies were associated with combined exposure to Se, Hg, Mn, Pb, and Mg. This distinct pattern significantly differed from other areas. Specifically, in Nechí, Cr, Ni, Hg, Se, and Mg emerged as the primary contributors to elevated frequencies of MNBN. In contrast, a combination of Hg and Ni played a role in increasing MNBN in Aranzazu. Interestingly, Se consistently correlated with increased MNBN frequencies across all active mining areas. Chemical elements in Montelibano exhibit a broader range compared to other mining zones, reflecting the characteristics of the high-impact and large-scale mining in the area. This research provides valuable insights into the effects of exposure to chemical mixtures, underscoring the importance of employing this approach in the risk assessment of communities, especially those from residential areas. © 2023 The Author

    On the sensitivity of the HAWC observatory to gamma-ray bursts

    Full text link
    We present the sensitivity of HAWC to Gamma Ray Bursts (GRBs). HAWC is a very high-energy gamma-ray observatory currently under construction in Mexico at an altitude of 4100 m. It will observe atmospheric air showers via the water Cherenkov method. HAWC will consist of 300 large water tanks instrumented with 4 photomultipliers each. HAWC has two data acquisition (DAQ) systems. The main DAQ system reads out coincident signals in the tanks and reconstructs the direction and energy of individual atmospheric showers. The scaler DAQ counts the hits in each photomultiplier tube (PMT) in the detector and searches for a statistical excess over the noise of all PMTs. We show that HAWC has a realistic opportunity to observe the high-energy power law components of GRBs that extend at least up to 30 GeV, as it has been observed by Fermi LAT. The two DAQ systems have an energy threshold that is low enough to observe events similar to GRB 090510 and GRB 090902b with the characteristics observed by Fermi LAT. HAWC will provide information about the high-energy spectra of GRBs which in turn could help to understanding about e-pair attenuation in GRB jets, extragalactic background light absorption, as well as establishing the highest energy to which GRBs accelerate particles

    Parasite responses to pollution: what we know and where we go in ‘Environmental Parasitology’

    Full text link

    Frequency and Characterization of Movement Disorders in Anti-IgLON5 Disease

    No full text
    Background and Objectives Anti-IgLON5 disease is a recently described neurologic disease that shares features of autoimmunity and neurodegeneration. Abnormal movements appear to be frequent and important but have not been characterized and are underreported. We describe the frequency and types of movement disorders in a series of consecutive patients with this disease. Methods In this retrospective, observational study, the presence and phenomenology of movement disorders were assessed with a standardized clinical questionnaire. Available videos were centrally reviewed by 3 experts in movement disorders. Results Seventy-two patients were included. In 41 (57%), the main reason for initial consultation was difficulty walking along with one or several concurrent movement disorders. At the time of anti-IgLON5 diagnosis, 63 (87%) patients had at least 1 movement disorder with a median of 3 per patient. The most frequent abnormal movements were gait and balance disturbances (52 patients [72%]), chorea (24 [33%]), bradykinesia (20 [28%]), dystonia (19 [26%]), abnormal body postures or rigidity (18 [25%]), and tremor (15 [21%]). Other hyperkinetic movements (myoclonus, akathisia, myorhythmia, myokymia, or abdominal dyskinesias) occurred in 26 (36%) patients. The craniofacial region was one of the most frequently affected by multiple concurrent movement disorders (23 patients [32%]) including dystonia (13), myorhythmia (6), chorea (4), or myokymia (4). Considering any body region, the most frequent combination of multiple movement disorders consisted of gait instability or ataxia associated with craniofacial dyskinesias or generalized chorea observed in 31 (43%) patients. In addition to abnormal movements, 87% of patients had sleep alterations, 74% bulbar dysfunction, and 53% cognitive impairment. Fifty-five (76%) patients were treated with immunotherapy, resulting in important and sustained improvement of the movement disorders in only 7 (13%) cases. Discussion Movement disorders are a frequent and leading cause of initial neurologic consultation in patients with anti-IgLON5 disease. Although multiple types of abnormal movements can occur, the most prevalent are disorders of gait, generalized chorea, and dystonia and other dyskinesias that frequently affect craniofacial muscles. Overall, anti-IgLON5 disease should be considered in patients with multiple movement disorders, particularly if they occur in association with sleep alterations, bulbar dysfunction, or cognitive impairment

    8th IAS Conference on HIV Pathogenesis, Treatment and Prevention (IAS 2015).

    No full text

    Contributions of a Child’s Built, Natural, and Social Environments to Their General Cognitive Ability: A Systematic Scoping Review

    No full text
    corecore