773 research outputs found

    Annual replication is essential in evaluating the response of the soil microbiome to the genetic modification of maize in different biogeographical regions

    Get PDF
    peer-reviewedThe importance of geographic location and annual variation on the detection of differences in the rhizomicrobiome caused by the genetic modification of maize (Bt-maize, event MON810) was evaluated at experimental field sites across Europe including Sweden, Denmark, Slovakia and Spain. DNA of the rhizomicrobiome was collected at the maize flowering stage in three consecutive years and analyzed for the abundance and diversity of PCR-amplified structural genes of Bacteria, Archaea and Fungi, and functional genes for bacterial nitrite reductases (nirS, nirK). The nirK genes were always more abundant than nirS. Maize MON810 did not significantly alter the abundance of any microbial genetic marker, except for sporadically detected differences at individual sites and years. In contrast, annual variation between sites was often significant and variable depending on the targeted markers. Distinct, site-specific microbial communities were detected but the sites in Denmark and Sweden were similar to each other. A significant effect of the genetic modification of the plant on the community structure in the rhizosphere was detected among the nirK denitrifiers at the Slovakian site in only one year. However, most nirK sequences with opposite response were from the same or related source organisms suggesting that the transient differences in community structure did not translate to the functional level. Our results show a lack of effect of the genetic modification of maize on the rhizosphere microbiome that would be stable and consistent over multiple years. This demonstrates the importance of considering annual variability in assessing environmental effects of genetically modified crops

    Revisiting soil fungal biomarkers and conversion factors: Interspecific variability in phospholipid fatty acids, ergosterol and rDNA copy numbers

    Get PDF
    - Refined conversion factors for soil fungal biomarkers are proposed. - High interspecific variability is present in all fungal biomarkers. - A modeling approach supports the validity of biomarker estimates in diverse soils. - ITS1 copies vary strongly, but are fungal-specific with least phylogenetic bias. - A combination of fungal biomarkers will reveal soil fungal physiology and activity. The abundances of fungi and bacteria in soil are used as simple predictors for carbon dynamics, and represent widely available microbial traits. Soil biomarkers serve as quantitative estimates of these microbial groups, though not quantifying microbial biomass per se. The accurate conversion to microbial carbon pools, and an understanding of its comparability among soils is therefore needed. We refined conversion factors for classical fungal biomarkers, and evaluated the application of quantitative PCR (qPCR, rDNA copies) as a biomarker for soil fungi. Based on biomarker contents in pure fungal cultures of 30 isolates tested here, combined with comparable published datasets, we propose average conversion factors of 95.3 g fungal C g−1 ergosterol, 32.0 mg fungal C µmol−1 PLFA 18:2ω6,9 and 0.264 pg fungal C ITS1 DNA copy−1. As expected, interspecific variability was most pronounced in rDNA copies, though qPCR results showed the least phylogenetic bias. A modeling approach based on exemplary agricultural soils further supported the hypothesis that high diversity in soil buffers against biomarker variability, whereas also phylogenetic biases impact the accuracy of comparisons in biomarker estimates. Our analyses suggest that qPCR results cover the fungal community in soil best, though with a variability only partly offset in highly diverse soils. PLFA 18:2ω6,9 and ergosterol represent accurate biomarkers to quantify Ascomycota and Basidiomycota. To conclude, the ecological interpretation and coverage of biomarker data prior to their application in global models is important, where the combination of different biomarkers may be most insightful

    Revisiting soil fungal biomarkers and conversion factors: Interspecific variability in phospholipid fatty acids, ergosterol and rDNA copy numbers

    Get PDF
    - Refined conversion factors for soil fungal biomarkers are proposed. - High interspecific variability is present in all fungal biomarkers. - A modeling approach supports the validity of biomarker estimates in diverse soils. - ITS1 copies vary strongly, but are fungal-specific with least phylogenetic bias. - A combination of fungal biomarkers will reveal soil fungal physiology and activity. The abundances of fungi and bacteria in soil are used as simple predictors for carbon dynamics, and represent widely available microbial traits. Soil biomarkers serve as quantitative estimates of these microbial groups, though not quantifying microbial biomass per se. The accurate conversion to microbial carbon pools, and an understanding of its comparability among soils is therefore needed. We refined conversion factors for classical fungal biomarkers, and evaluated the application of quantitative PCR (qPCR, rDNA copies) as a biomarker for soil fungi. Based on biomarker contents in pure fungal cultures of 30 isolates tested here, combined with comparable published datasets, we propose average conversion factors of 95.3 g fungal C g−1 ergosterol, 32.0 mg fungal C µmol−1 PLFA 18:2ω6,9 and 0.264 pg fungal C ITS1 DNA copy−1. As expected, interspecific variability was most pronounced in rDNA copies, though qPCR results showed the least phylogenetic bias. A modeling approach based on exemplary agricultural soils further supported the hypothesis that high diversity in soil buffers against biomarker variability, whereas also phylogenetic biases impact the accuracy of comparisons in biomarker estimates. Our analyses suggest that qPCR results cover the fungal community in soil best, though with a variability only partly offset in highly diverse soils. PLFA 18:2ω6,9 and ergosterol represent accurate biomarkers to quantify Ascomycota and Basidiomycota. To conclude, the ecological interpretation and coverage of biomarker data prior to their application in global models is important, where the combination of different biomarkers may be most insightful

    Evaluation of a Novel Rapid Test System for the Detection of Allergic Sensitization to Timothy Grass Pollen against Established Laboratory Methods and Skin Prick Test

    Get PDF
    Type I hypersensitivity is driven by allergen specific immunoglobulin E (sIgE) and thus sIgE represents a marker for modern allergy diagnosis. Recently, a rapid assay for the detection of sIgE, termed as (Allergy Lateral Flow Assay) ALFA, has been developed. The objective of our study is the evaluation of a scanner-based system for the semiquantitative interpretation of ALFA results. Agreement to Skin Prick Test (SPT, Allergopharma), ALLERG-O-LIQ System (Dr. Fooke), and ImmunoCAP (Phadia) was investigated using 50 sera tested for specific IgE to timothy grass pollen (g6). 35/50 sera were positive by SPT, ALLERG-O-LIQ, and ImmunoCAP. Excellent agreement was observed between ALFA results and SPT, ImmunoCAP, and ALLERG-O-LIQ. Area under the curve (AUC) values were found at 1.0, and 100% sensitivity and specificity was found versus all other methods. Visual- and scanner-based interpretation of the ALFA results revealed excellent agreement

    Central neuropeptide Y receptors are involved in 3(rd )ventricular ghrelin induced alteration of colonic transit time in conscious fed rats

    Get PDF
    BACKGROUND: Feeding related peptides have been shown to be additionally involved in the central autonomic control of gastrointestinal functions. Recent studies have shown that ghrelin, a stomach-derived orexigenic peptide, is involved in the autonomic regulation of GI function besides feeding behavior. Pharmacological evidence indicates that ghrelin effects on food intake are mediated by neuropeptide Y in the central nervous system. METHODS: In the present study we examine the role of ghrelin in the central autonomic control of GI motility using intracerobroventricular and IP microinjections in a freely moving conscious rat model. Further the hypothesis that a functional relationship between NPY and ghrelin within the CNS exists was addressed. RESULTS: ICV injections of ghrelin (0.03 nmol, 0.3 nmol and 3.0 nmol/5 μl and saline controls) decreased the colonic transit time up to 43%. IP injections of ghrelin (0.3 nmol – 3.0 nmol kg(-1 )BW and saline controls) decreased colonic transit time dose related. Central administration of the NPY(1 )receptor antagonist, BIBP-3226, prior to centrally or peripherally administration of ghrelin antagonized the ghrelin induced stimulation of colonic transit. On the contrary ICV-pretreatment with the NPY(2 )receptor antagonist, BIIE-0246, failed to modulate the ghrelin induced stimulation of colonic motility. CONCLUSION: The results suggest that ghrelin acts in the central nervous system to modulate gastrointestinal motor function utilizing NPY(1 )receptor dependent mechanisms

    Synthesis of spiroacetals using functionalised titanium carbenoids

    Get PDF
    Alkylidenation of lactones with functionalised titanium carbenoid reagents (Schrock carbenes) followed by acid-induced cyclisation of the resulting enol ethers constitutes a new method for the preparation of [4.4], [4.5] and [5.5] spiroacetals (1,6-dioxaspiro[4.4]nonanes, 1,6-dioxaspiro[4.5]decanes and 1,7-dioxaspiro[5.5]undecanes, respectively, sometimes termed 5,5-, 5,6- and 6,6-spiroketals). The titanium carbenoids are easily generated from readily available thioacetals

    Legionella pneumophila macrophage infectivity potentiator protein appendage domains modulate protein dynamics and inhibitor binding

    Get PDF
    Macrophage infectivity potentiator (MIP) proteins are widespread in human pathogens including Legionella pneumophila, the causative agent of Legionnaires' disease and protozoans such as Trypanosoma cruzi. All MIP proteins contain a FKBP (FK506 binding protein)-like prolyl-cis/trans-isomerase domain that hence presents an attractive drug target. Some MIPs such as the Legionella pneumophila protein (LpMIP) have additional appendage domains of mostly unknown function. In full-length, homodimeric LpMIP, the N-terminal dimerization domain is linked to the FKBP-like domain via a long, free-standing stalk helix. Combining X-ray crystallography, NMR and EPR spectroscopy and SAXS, we elucidated the importance of the stalk helix for protein dynamics and inhibitor binding to the FKBP-like domain and bidirectional crosstalk between the different protein regions. The first comparison of a microbial MIP and a human FKBP in complex with the same synthetic inhibitor was made possible by high-resolution structures of LpMIP with a [4.3.1]-aza-bicyclic sulfonamide and provides a basis for designing pathogen-selective inhibitors. Through stereospecific methylation, the affinity of inhibitors to L. pneumophila and T. cruzi MIP was greatly improved. The resulting X-ray inhibitor-complex structures of LpMIP and TcMIP at 1.49 and 1.34 Å, respectively, provide a starting point for developing potent inhibitors against MIPs from multiple pathogenic microorganisms

    Legionella pneumophila macrophage infectivity potentiator protein appendage domains modulate protein dynamics and inhibitor binding

    Get PDF
    Macrophage infectivity potentiator (MIP) proteins are widespread in human pathogens including Legionella pneumophila, the causative agent of Legionnaires' disease and protozoans such as Trypanosoma cruzi. All MIP proteins contain a FKBP (FK506 binding protein)-like prolyl-cis/trans-isomerase domain that hence presents an attractive drug target. Some MIPs such as the Legionella pneumophila protein (LpMIP) have additional appendage domains of mostly unknown function. In full-length, homodimeric LpMIP, the N-terminal dimerization domain is linked to the FKBP-like domain via a long, free-standing stalk helix. Combining X-ray crystallography, NMR and EPR spectroscopy and SAXS, we elucidated the importance of the stalk helix for protein dynamics and inhibitor binding to the FKBP-like domain and bidirectional crosstalk between the different protein regions. The first comparison of a microbial MIP and a human FKBP in complex with the same synthetic inhibitor was made possible by high-resolution structures of LpMIP with a [4.3.1]-aza-bicyclic sulfonamide and provides a basis for designing pathogen-selective inhibitors. Through stereospecific methylation, the affinity of inhibitors to L. pneumophila and T. cruzi MIP was greatly improved. The resulting X-ray inhibitor-complex structures of LpMIP and TcMIP at 1.49 and 1.34 Å, respectively, provide a starting point for developing potent inhibitors against MIPs from multiple pathogenic microorganisms.</p
    • …
    corecore