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ABSTRACT
●   Refined  conversion  factors  for  soil
fungal biomarkers are proposed.

●   High  interspecific  variability  is  present
in all fungal biomarkers.

●   A  modeling  approach  supports  the
validity of biomarker estimates in diverse
soils.

●   ITS1  copies  vary  strongly,  but  are
fungal-specific  with  least  phylogenetic
bias.

●   A  combination  of  fungal  biomarkers
will  reveal  soil  fungal  physiology  and
activity.

The abundances of  fungi  and bacteria  in
soil  are  used  as  simple  predictors  for
carbon dynamics, and represent widely
available microbial traits. Soil biomarkers serve as quantitative estimates of these microbial groups, though not quantifying microbial biomass per
se. The accurate conversion to microbial carbon pools, and an understanding of its comparability among soils is therefore needed. We refined
conversion factors for classical fungal biomarkers, and evaluated the application of quantitative PCR (qPCR, rDNA copies) as a biomarker for
soil  fungi.  Based on biomarker contents in  pure fungal  cultures of  30 isolates tested here,  combined with comparable published datasets,  we
propose average conversion factors of  95.3 g fungal  C g−1 ergosterol,  32.0 mg fungal  C μmol−1 PLFA 18:2ω6,9 and 0.264 pg fungal  C ITS1
DNA copy−1.  As expected,  interspecific  variability  was most  pronounced in rDNA copies,  though qPCR results  showed the least  phylogenetic
bias.  A  modeling  approach  based  on  exemplary  agricultural  soils  further  supported  the  hypothesis  that  high  diversity  in  soil  buffers  against
biomarker variability, whereas also phylogenetic biases impact the accuracy of comparisons in biomarker estimates. Our analyses suggest that
qPCR  results  cover  the  fungal  community  in  soil  best,  though  with  a  variability  only  partly  offset  in  highly  diverse  soils.  PLFA  18:2ω6,9  and
ergosterol represent accurate biomarkers to quantify Ascomycota and Basidiomycota. To conclude, the ecological interpretation and coverage of
biomarker data prior to their application in global models is important, where the combination of different biomarkers may be most insightful.
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 1 Introduction

Soils fulfill  crucial  ecosystem functions like carbon (C) stor-
age, plant nutrition, and element cycling (Parikh and James,
2012).  These  functions  are  driven  by  a  community  of
microorganisms, quantitatively typically dominated by bacte-
ria and fungi, which also constitute a relevant component of
C  and  nutrient  cycles  (Liang  et  al.,  2019).  However,  the
nature and complexity of soil makes it challenging to quantify
microbial  biomass.  Direct  microscopic  counts  are  not  only
labor-  and  time-consuming,  but  also  prone  to  error  due  to
extraction inefficiencies,  selection biases towards cultivable
microbes,  staining  specificity  and  subjectivity  (Stahl  et  al.,
1995; Joergensen and Wichern, 2008). Instead, biomarkers
reflecting  microbial  biomass  offer  easy  quantification  and
are  used preferentially  in  many soil  analyses.  Phospholipid
fatty acids (PLFAs) represent such standard biomarkers for
soil  microorganisms.  Different  organism  groups  show
specific  PLFA  patterns – the  major  biomolecules  in  cell
membranes  (Frostegård  and  Bååth,  1996).  The  PLFA
18:2ω6,9  is  used as  a  standard  biomarker  for  saprotrophic
and  ectomycorrhizal  fungi,  while  the  PLFA  16:1ω5  is  the
common marker for arbuscular mycorrhiza fungi, and cyclic
and branched chain PLFAs are frequent in different bacterial
groups  (Ruess  and  Chamberlain,  2010; Ngosong  et  al.,
2012; Willers  et  al.,  2015).  As  a  consequence,  the  PLFA
marker composition in soil provides insights into the relative
abundance of these microbial groups.

Such group level resolution appears relatively coarse, but
fungal:bacterial ratios represent important ecological indica-
tors. Their ratios are discussed as a promising microbial trait
to  be  included in  biogeochemical  models  (He et  al.,  2021),
also  because  of  widely  accessible  datasets  (Bar-On  et  al.,
2018; Crowther  et  al.,  2019; Yu  et  al.,  2022).  The  relative
abundances of fungi and bacteria correlate to soil parameters
relevant  for  C cycling dynamics:  high fungal:bacterial  ratios
have been shown to positively relate to C:N ratios,  carbon-
use  efficiency,  and  soil  organic  carbon  stocks  (Strickland
and  Rousk,  2010).  Malik  et  al.  (2016)  showed  that  litter-
derived C was incorporated more efficiently into soil organic
matter  in  soils  characterized by high fungal:bacterial  ratios.
In line with such observations, global analyses reveal a posi-
tive  correlation  of  relative  fungal  abundances  with  soil
organic  carbon  stocks  (Yu  et  al.,  2022).  Amongst  other
factors,  these patterns are driven by the special  physiology
of  the  mycelial  growth  form  in  fungi  and  their  biochemical
composition  (e.g.,  C-rich  cell  walls  and  high  C:N  ratios;
Mouginot  et  al.,  2014; Moore  et  al.,  2021).  Fungal  growth
physiology together with their biochemical composition leads
to  high  C-  and  nitrogen-use  efficiencies  (Camenzind  et  al.,
2021),  and  likely  also  to  the  high  contribution  of  fungal

necromass to soil organic carbon stocks (Liang et al., 2019;
Camenzind et al.,  2023).  This important role of fungi in soil
C cycling demands more precise understanding for predicting
their abundance based on biomarker-analyses.

Soil  fungal  C  contents  must  be  indirectly  deduced  from
biomarker abundances via conversion factors (conversion of
unit  biomarker  to  soil  fungal  C; Joergensen  and  Wichern,
2008).  Biomarkers  only  represent  a  proxy  for  microbial
biomass:  in  the  first  instance biomarkers  are  no  more  than
quantitative  values  of  this  biomolecule  in  soil,  with  its
primary  origin  from the  specific  organism group.  Within  the
organisms,  these  biomolecules  are  only  a  fraction  of  the
total  biomass,  and  conversion  of  these  proportional  values
to actual biomass is needed to correctly calculate C pools of
respective groups. Such conversion factors are derived from
relative  biomolecule  fractions  in  biomass  (Joergensen  and
Wichern,  2008).  However,  especially  in  the  case  of  the
fungal  PLFA  marker  linoleic  acid  (18:2ω6,9,  hereafter
referred  to  as  fungal  biomarker)  limited  data  are  available.
Its  general  specificity  for  fungi  has  been  demonstrated
repeatedly: Federle  (1986) was  the  first  one  to  show  that
fungal  mycelia are enriched in this specific  PLFA (using 47
fungal species): the 18:2ω6,9 marker constituted on average
43%  of  total  PLFAs  (Frostegård  and  Bååth,  1996).  Later,
studies  with  further  fungal  isolates  confirmed the specificity
of  this  biomarker  in  fungi  (Zelles,  1997; Klamer  and Bååth,
2004; Taube  et  al.,  2019).  Other  fatty  acids  frequently
observed  in  (saprobic)  fungal  tissues  are  α-linolenic  acid
(18:3ω3,6,9)  and  γ-linolenic  acid  (18:3ω6,9,12)  (Weete,
1980; Vestal  and  White,  1989; Van  der  Westhuizen  et  al.,
1994). However, these fatty acids are less specific and also
found in higher plants (Ruess and Chamberlain, 2010).

Still,  quantitative  data  of  PLFA  biomarker  contents  in
fungal biomass are rare. Klamer and Bååth (2004) provided
a  first  estimate  for  a  conversion  factor  based  on  12  fungal
species  isolated  from  compost:  a  value  of  85  mg  fungal  C
μmol−1 18:2ω6,9 PLFA (as recalculated by Joergensen and
Wichern,  2008). Baldrian  et  al.  (2013) analyzed Basid-
iomycete mushrooms  in  forests,  reporting  a  conversion
factor  of  12  mg fungal  C  μmol−1 18:2ω6,9  PLFA based  on
11 species.  These data highlight  the challenge to  come up
with  one  conversion  factor  for  this  biomarker:  not  only  do
studies  diverge,  also  within  studies  large  variation  exists –
the coefficient of variation (CV) among fungal isolates tested
by Klamer and Bååth (2004) amounted to 74%. In addition,
PLFA  composition  varies  phylogenetically – especially
Mucoromycota and Mortierellomycota show a specific PLFA
composition (Zelles, 1997; Klamer and Bååth, 2004; Taube
et  al.,  2019).  The  lipid  pattern  of  fungi  is  variable  even  in
systematically  related  fungi,  i.e.,  taxonomic  or  phylogenetic
relationships  are  not  necessarily  reflected  in  fatty  acid
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profiles (Ruess et al., 2002). Consequently, fungal community
shifts – as a consequence of environmental or spatial gradi-
ents – might affect the comparability of biomarker analyses.

PLFA analyses are  often  applied  in  soil,  since they  allow
characterization  of  the  complete  microbiome.  However,
besides PLFA analysis,  ergosterol  is  another  molecule  that
is  often  used  as  a  fungal  biomarker.  More  data  exist  on
quantitative  ergosterol  contents  in  fungal  tissues  than  on
PLFA biomarkers, leading to more robust conversion factors
(Joergensen  and  Wichern,  2008 and  references  therein).
However,  the  limitations  discussed  for  PLFA  data  apply  to
an  even  greater  extent:  ergosterol  is  a  major  sterol  of  cell
membranes  in  higher  fungi  (Moore  et  al.,  2021),  but  many
other sterols are incorporated in fungi and some fungi do not
even  produce  ergosterol  (Weete  et  al.,  2010).  Different
fungal  lineages  produce  specific  sterol  components,  which
again  results  in  high  variability  in  ergosterol  concentrations
among species and phyla (Joergensen and Wichern, 2008;
Weete et al., 2010; conversion factors summarized by Joer-
gensen and Wichern, 2008 range from 13 to 410 g fungal C
g−1 ergosterol).

Due to progress in DNA-based soil  analyses, quantitative
PCR (qPCR)  has  emerged  as  another  promising  approach
for the quantification of microbial groups in soil, e.g. targeting
bacterial  16S  rRNA genes  or  fungal  ITS1  or  ITS2  (internal
transcribed spacer) sequences in the rDNA region (Fierer et
al., 2005; Hungate et al., 2015; Chen et al., 2023). Currently
there  is  only  insufficient  data  available  to  conclude  from
qPCR  results  on  the  actual  fungal  biomass  C.  Ideally  this
will  be possible by establishing the principles of  conversion
factors  discussed  above  for  PLFA  and  ergosterol  data.
Direct  relationships  of  qPCR  values  and  fungal  biomass
have  yet  rarely  been  assessed. Baldrian  et  al.  (2013)
analyzed ITS copy numbers in fungal mushrooms, reporting
a  conversion  factor  of  1.26  pg  fungal  C  copy−1 ITS,  with  a
variability  slightly  higher  than  that  observed  in  PLFA  and
ergosterol contents in the same fungi. However, these anal-
yses were done with Basidiomycete mushrooms only, where
it  is  also  unclear  how  active  the  mycelium  would  be
compared  to  soil  hyphae  (i.e.,  lower  DNA  contents),
restricted  to  a  forest  (ectomycorrhizal)  system.  Generally,
there is an assumption that the large variability in ITS copy
numbers  and  also  mycelial  DNA  contents  among  species
and  environmental  conditions  will  lead  to  unmanageable
variation  (Lofgren  et  al.,  2019; Lavrinienko  et  al.,  2021).
However,  as discussed above,  other  biomarkers also show
large  variability,  with  likely  even  stronger  phylogenetic
biases.  In  fact,  qPCR  values  partly  correlate  with  classical
biomarker  analyses  (Zhang  et  al.,  2017; Pérez-Guzmán  et
al., 2021; Osburn et al., 2022), and are commonly combined
with  them  as  a  quantitative  tool  to  determine  group  abun-
dances (Chen et al., 2023). Thus, the growing availability of

these data and their robust affiliation to respective microbial
groups  call  for  exploring  the  validity  of  qPCR  conversion
factors to make these data applicable for C cycling models.

Here,  we  aimed  to  provide  a  better  understanding  about
fungal biomarker contents in fungi and their interspecific and
phylogenetic  variability  to  improve  existing  conversion
factors, and explore the possibility of establishing a conver-
sion factor for fungal ITS1 qPCR data. Based on a collection
of  30  soil  saprobic  fungal  isolates  originating  from  natural
grassland soils, covering the phyla Basidiomycota, Ascomy-
cota, Mortierellomycota and Mucoromycota,  we  measured
PLFA  profiles,  ergosterol  contents  and  DNA  concentration
and ITS1 copy numbers for these isolates. These data were
used  to  address  the  hypotheses  that  (i)  high  interspecific
variability  is  present  in  all  biomarkers,  (ii)  phylogenetic
biases  are  especially  strong  in  PLFA  and  ergosterol
contents  and  (iii)  high  species  diversity  in  soil  can  buffer
against inaccuracies of conversion factors.

 2 Materials and methods

 2.1 Fungal isolates

A total of 30 fungal isolates of the Rillig Lab Coreset (RLCS)
were  used  for  this  study  (Andrade-Linares  et  al.,  2016;
Camenzind  et  al.,  2022).  Originally,  these  strains  were
isolated  from a  natural  grassland  site  in  northern  Germany
in  2014  (“Oderhänge  Mallnow” close  to  the  town of  Lebus,
Germany; 52°28′N, 14°29′E), using diverse growth media to
reduce the predominance of spores and fast-growing fungi,
and to include Basidiomycota strains (Andrade-Linares et al.,
2016).  This  effort  resulted  in  a  phylogenetically  diverse
collection  of  saprobic  fungi  including  20 Ascomycota,  3
Basidiomycota,  2 Mucoromycota and  5 Mortierellomycota
(taxonomic  classification  is  based  on  long  sequence  reads
of  ITS1,  5.8S,  ITS2  and  partial  LSU  (Camenzind  et  al.,
2022); for details see Table S1, Fig. 1). Still, as in all fungal
studies  based  on  direct  soil  isolation,  the  abundance  of
Basidiomycota was  comparatively  low  (Thorn  et  al.,  1996;
Klamer and Bååth, 2004; Tedersoo et al., 2022).

The fungal isolates have been previously characterized by
functional trait  analyses (e.g., Lehmann et al.,  2019; Zheng
et al., 2020). To maintain isolates over time, they were kept
on  potato-dextrose  agar  (PDA)  at  4°C,  and  regularly
refreshed from frozen stock cultures.

 2.2 Study design

Fungi  were  transferred  from  active  PDA  cultures  to  malt
extract  broth  (Carl  Roth  GmbH  +  Co.  KG,  Karlsruhe
Germany),  using  three  (technical)  replicates  per  isolate  (a
true replicate  of  a  fungal  species  would  refer  to  the  same
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species  isolated  repeatedly  from  soil).  Standard  growth
media  were  needed  to  obtain  sufficient  fungal  biomass  for
further  analyses  of  biochemical  composition,  though  we
decided  for  a  growth  medium  which  is  more  similar  to  soil
elemental  ratios (Mouginot et  al.,  2014).  Liquid media were
chosen  for  simple  biomass  extractions  without  heat  treat-
ments  (as  commonly  applied  for  melting  agar  media).  To
avoid  artificial  submersion  and  oxygen  limitation  of  fungi,
cultures were not shaken and kept aslant to increase acces-
sible  medium  surface  areas.  After  two  weeks  of  growth  at
20°C, fungal biomass was captured on a 20 μm mesh, and
washed  thoroughly  (>  1  L  dest.  H2O)  to  remove  growth
media.  Fungal  mycelia  were  freeze-dried  and  stored  at
−20°C for all further analyses. Fungal growth and processing
was  conducted  at  the  Freie  Universität  Berlin.  Thereafter,
samples were transferred to the University of Hohenheim for
biochemical analyses. Total fungal biomass obtained ranged
between  5  and  290  mg  per  sample,  with  large  variations
among isolates (which are known to vary strongly in growth
traits (Lehmann et al., 2019).

 2.3 Fatty acid analyses

PLFA  analyses  were  carried  out  according  to Frostegård
et  al.  (1991, 1993).  Initially,  2–20  mg  fungal  mycelia
(depending  on  the  available  amount  of  fungi)  were  lysed
with  1  mL Bligh  &  Dyer  reagent  in  a  Lysing  Matrix  E  Tube
(MPBio) using a FastPrep Instrument (5,5 Speed, 40 s) and
then mixed with 17.4 mL Bligh & Dyer reagent [chloroform,
methanol,  and  citrate  buffer  (pH  4),  1:2:0.8].  For  lipid  frac-
tionation, the extract was pipetted onto a silica acid column
and  subsequently  eluted  from  the  column  with  chloroform
(NLFA),  acetone  (glycolipids),  and  methanol  (PLFA)
(Frostegård et al., 1991). Methanolysis of the PLFA fraction
was  conducted  with  methanolic  KOH and  fatty  acid  methyl
esters  (FAMEs)  were  extracted  with  a  solution  of  hexane
chloroform  and  acetic  acid  as  described  by Ruess  et  al.
(2007). The resulting PLFA were dissolved in iso-octane and
measured  on  a  gas  chromatograph  (GC,  AutoSystem  XL,
PerkinElmer Inc., Norwalk, CT, United States). The GC was
equipped with a flame ionization detector, an HP-5 capillary
column  (crosslinked  5%  phenyl  methyl  silicone;  50  m ×
0.2 mm, film thickness: 0.33 mm) and helium as carrier gas.
The initial  column temperature of  70°C was held for  2 min.
Temperature  was  then  increased  by  30°C  min−1 to  160°C,
then  by  3°C  min−1 to  280°C  and  held  for  15  min.  Injection
temperature was set at 260°C. The concentration of FAMEs
was calculated via an internal c24:1 FAME standard, which
was  added  to  the  samples  before  methylation.  Standard
PLFA  markers  were  quantified  (see  results  section).
18:1ω9c/18:3ω3,9,12  and  18:1ω7/18:1ω9t  were  only  co-
eluted in this study, respectively.

 2.4 Ergosterol content measurements

Ergosterol  was  determined  according  to  Djajakirana  et  al.
(1996). In brief,  1−13 mg fungal mycelia (depending on the
available amount of fungi) was weighed into a Lysing Matrix
E  Tube  (MPBio),  1  mL  of  ethanol  was  added  and  lysed  in
the  FastPrep  like  for  PLFA analysis.  The  lysate  was  trans-
ferred  into  a  100  mL  amber  glass  wide-neck  bottles  and
extracted  with  25  mL  ethanol  on  a  horizontal  shaker  for
30  min  at  250  r  min−1.  After  extraction,  the  suspensions
were transferred to 50 mL Falcon tubes and centrifuged for
30 min at 4 400 ×g. Ten mL of the extracts were then trans-
ferred to 10 mL centrifuge tubes and vaporized to dryness in
a  rotary  vacuum  concentrator  at  50°C.  Subsequently,  the
dried  extracts  were  dissolved  in  1  mL  methanol  and  trans-
ferred  through  syringe  filters  (0.45  μm)  into  amber  glass
HPLC  (high  performance  liquid  chromatography)  vials.  For
each extraction, two standard soil samples as well as blanks
(without  soil)  were  included.  The  measurements  were
performed  via  HPLC  (Agilent 1 260 Infinity  series,  Agilent
Technologies). For ergosterol separation, a reversed phase
column (MZ Spherisorb  ODS-2  C18,  150 × 3  mm,  particle
size 3 μm) and 100 % methanol as mobile phase (flow rate
of  0.5  mL  min−1)  was  used.  Temperature  during  the
measurement was set to 40°C. The detection occurs with a
Diode Array Detector (Agilent) at a wavelength of 282 nm.

 2.5 DNA concentrations and ITS1 copy number
determination

The  abundance  of  the  fungal  ITS1  DNA  sequence  was
quantified by qPCR (ABI  prism 7 500 Fast  System,  Applied
Biosystems,  Foster  City,  CA,  USA).  For  this,  DNA  was
extracted  from  1−13  mg  fungal  mycelia  (depending  on  the
available amount)  using the E.Z.N.A.  Soil  DNA Kit  (Omega
Bio-Tek,  Inc.,  VWR  International  GmbH,  Bruchsal)  and
quantified  with  a  Picogreen  kit  (Quant-ITTM PicoGreenTM

dsDNA  Assay  kit,  Invitrogen)  according  to  manufacturer´s
instructions.  DNA  was  diluted  with  ultra-pure  water  to  a
target concentration of 3 ng DNA μL−1. For the qPCR assay
a  reaction  mix  of  0.75  μL  of  each  forward  (ITS3F)  and
reverse (ITS4R) primer (White et al., 1990; Manerkar et al.,
2008;  primer  concentrations  of  10  pmol  μL−1),  0.375  μL
T4gp32, 7.5 μL SYBR Green, 4.125 μL ultra-pure water, and
1.5  μL  DNA  template  was  prepared.  A  program  with  35
cycles, each 10 min 95°C, 15 s 95°C, 30 s 55°C, 30 s 72°C,
30 s 76°C was used. Additionally, a 60°C to 95°C step was
added to each run to obtain the denaturation curve specific
for  each  amplified  gene  copy.  Mean  extraction  efficiency
was 93%. Standard curves were generated in triplicate with
serial dilutions of a known quantity of the respective isolated
plasmid  DNA.  Each  qPCR  run  included  two  no-template
controls showing no or negligible values.
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 2.6 Calculation of conversion factors

Following  the  methods  established  by  Joergensen  and
Wichern  (2008),  we  calculated  conversion  factors  for  the
commonly used quantitative soil fungal biomass estimates−
18:2ω6,9  PLFA  marker  [mg  fungal  C  μmol−1 18:2ω6,9],
ergosterol  [g  fungal  C  g−1 ergosterol]  and  ITS1  copy
numbers [pg fungal C copy−1 ITS], applying formula (1),
 

Conversion f actor
[
f ungal C unit−1 biomarker

]
=

1
Biomarker content

[
unit g−1 f ungus

] ×0.47 (1)

We  calculated  conversion  factors  based  on  the  dataset
presented here, as well as on available data from published
literature.  A  short  literature  review  was  done  in  google
scholar  using  the  search  terms “fung*”, “biomarker*”,
“conversion  factor*”, “ergosterol”, “phospholipid  fatty  acid*”,
“PLFA*”, “DNA”, “copy  number*”, “ITS*” and/or “rDNA” in
different combinations, as well as screening cited references
therein.  We  only  included  studies  directly  analyzing
biomarker  contents  in  fungal  tissues  during  laboratory
experiments  (for  the  complete  dataset  see  Table  S2).  In
case  the  studies  assessed  biomarker  contents  for  different
replicates,  time  points  or  conditions,  either  mean  values
were  taken  or  only  one  treatment  included,  to  obtain  one
value per  fungal  strain  (complete  datasets  are  summarized
in Table S2). For the calculation of conversion factors, mean
biomarker contents in all tested fungal isolates (in this study
or all studies, respectively) were taken, and corrected for the
relative  C  content  in  fungal  biomass – here  estimated  as
0.47 (formula (1)). This value was also used by Joergensen
and Wichern (2008), and perfectly coincides with the average
C content in the fungal  isolates analyzed here when grown
under  different  growth  media  conditions  (10%  potato-
dextrose  agar,  cellulose  medium and glucose medium with
C:N  2010%  potato-dextrose  agar,  cellulose  medium  and
glucose  medium  with  C:N  20; Camenzind  et  al.,  2021).  In
case  of  the  PLFA  marker  18:2ω6,9  an  additional  phyloge-
netically corrected conversion factor was calculated, due to
the  large  variation  in  marker  contents  among phyla.  In  this
case,  a  weighted  mean of  PLFA marker  contents  in  fungal
isolates was calculated using global read abundances of the
four phyla reported in Tedersoo et al. (2022; Table S2).

 2.7 Statistical analyses

All  statistical  analyses  were  conducted  in  R  version  4.1.3
(R Core Team, 2021). Respective commands and packages
are given in brackets.

The  phylogenetic  relatedness  among  fungal  isolates  was
determined using an alignment of the full sequence reads of
ITS1,  5.8S,  ITS2 and partial  LSU (AlignSeqs(), DECIPHER
(Wright,  2016)).  Genetic  distance  was  calculated  (dist.ml(),
phangorn (Schliep,  2011))  and  a  phylogenetic  tree

constructed  using  the  unweighted  pair  group  method  with
arithmetic mean (upgma(), phangorn).

x̄The  mean  ( ),  coefficient  of  variation  (CV  =  (standard
deviation/mean)*100)  and  phylogenetic  signal  (Pagel´s  λ;
phylosignal(), package phylosignal (Keck et al., 2016)) were
calculated for each fungal biomarker based on the average
values  of  individual  isolates  (n =  3).  Differences  among
phyla  were  analyzed  with  the  whole  dataset  (all  replicates
included), using mixed-effects models with isolate identity as
random effect (lme(), nlme (Pinheiro et al., 2021)). In case of
non-random  distributions  of  residuals,  generalized  linear
mixed  models  were  fit  with  appropriate  error  distributions
(glmmPQL(), MASS (Venables  and  Ripley,  2002)).  PLFA
patterns  were  displayed  by  principal  component  analyses
(PCA, prcomp()) using relative PLFA marker contents.

We  modeled  the  effects  of  interspecific  variability  in
marker contents on the validity of conversion factors based
on theoretical fungal soil communities. To analyze the overall
effects of community shifts on deviations of estimated fungal
C contents (calculated using isolate biomarker contents and
our  conversion  factors)  from  actual  fungal  C  contents,
randomized  communities  of  different  diversity  levels  of  the
30  fungal  isolates  analyzed  here  were  modeled  (with  the
assumption that biomarker expression does not change in a
community context).  For each diversity level  (5,  10,  20 and
30), 1 000 random  communities  were  generated  based  on
random  draws  (without  replacement)  of  fungal  isolates.
Thereafter, individual isolate abundances in these theoretical
communities were randomly varied between 0 and 100. For
each  of  these  randomized  communities,  the  real  fungal  C
content  (fungal  C  =  47%  of  biomass)  based  on  summed
fungal abundances was calculated. The estimated fungal C
content  was  calculated  summing  biomarker  contents  of
included  isolates,  which  were  converted  to  fungal  C  with
conversion factors obtained in this study (here we used the
conversion factors calculated with our data only).

Additionally,  the  validity  of  the  conversion  factors  was
modeled in soils differing in the composition of fungal phyla.
We chose to base these model communities on three exem-
plary  soils  used  in  a  common  experimental  platform  of  the
SoilSystems  project  (DFG  project  SPP 2 322,  available  at
the  website:  SoilSystems),  which  strongly  varied  in  their
phylogenetic  composition.  Details  on  fungal  community
analyses  in  these  soils  are  summarized  in  the  Supporting
Information S1. Shortly, soil fungal abundance was quantified
by qPCR, and community composition determined by Illumina
sequencing  of  the  ITS1  taxonomic  marker.  These  data
revealed  a  strong  variation  in  the  relative  abundances  of
fungal phyla. Here, we paired the information on total fungal
abundance and relative phyla variation to model theoretical
communities  with  our  30  fungal  isolates.  Again,  for  each
modeled soil type, 1 000 random communities were assem-
bled  (each  based  on  all  30  fungal  isolates).  Within  these
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communities, abundances of individual isolates were varied
randomly, though with the boundaries of relative phyla abun-
dances  as  observed  in  these  soil  types.  Total  fungal  C
contents  were  based  on  the  relative  fungal  ITS  copy
numbers  observed  in  these  soils  (Supporting  Information
S1).  As  described  above,  biomarker  based  fungal  C
contents were estimated using PLFA biomarker contents in
modeled  communities  and  respective  conversion  factors,
and compared to actual fungal C contents.

 3 Results

 3.1 Expression of soil fungal biomarkers in saprobic fungal
isolates

On  average,  the  fungal  isolates  tested  in  this  study
contained per g fungus (dry weight) 1.9 ± 1.6 mg ergosterol
(mean ± s.d.), 1.8 × 1012 ± 2.2 × 1012 ITS1 copy numbers
and  173  ±  113  μg  total  DNA  contents  (Fig.  1).  The  total
PLFA  concentration  was  on  average  22.0  ±  11.0  μmol  g−1

fungus,  with  the  highest  peak  being  present  in  the  fungal
biomarker 18:2ω6,9 with 8.8 ± 7.0 μmol g−1 fungus, as well
as the 18:1ω9c/18:3ω3,9,12 and 18:3ω6,9,12 markers with
4.8  ±  3.2  and  0.5  ±  1.6  μmol  g−1 fungus,  respectively
(Table 1, Fig. 2).

There  was  considerable  variation  in  biomarker  contents
among fungal  isolates,  as also evident from the large stan-
dard  deviations  and  coefficients  of  variation  (Fig.  1B).  The
overall  interspecific  variation  was  highest  in  ITS1  copy
numbers  (CV  =  122  %, Fig.  1).  However,  this  ITS1  copy
number  variation  was  not  driven  by  phylogenetic  relation-
ships, whereas ergosterol contents and fungal PLFA markers
showed  a  clear  deviation  among  phyla  (Table  1, Fig.  1),
reflected  also  in  the  phylogenetic  signals  (Fig.  1B).  When
analyzing differences among the individual phyla, there was
a  clear  difference  in Mortierellomycota and Mucoromycota
compared to Ascomycota and Basidiomycota (Fig. 2A). Both
the  concentrations  of  the  fungal  PLFA  biomarker  18:2ω6,9
and  ergosterol  were  significantly  reduced  in Mortierellomy-
cota and Mucoromycota (Fig. S1a), while the PLFA markers
18:1ω9c/18:3ω3,9,12  and  18:3ω6,9,12  were  enriched.  The

 

 

x̄

Fig. 1    Distribution  of  different  quantitative  fungal  biomarkers  in
soil fungal isolates. (A) Visualization of the data distribution, with the
y axis  representing  scaled  average  values  of  each  fungal  isolate
[1  sd,  center  =  0]  multiplied  by  the  coefficient  of  variation  (CV)  of
each variable. This method allows for a comparison of data variability
among different  variables (i.e.,  a value with 1sd deviation from the
mean is normalized by its proportional difference to the mean, e.g.,
80%  in  case  of  the  PLFA  marker  18:2ω6,9).  (B)  Mean  biomarker
concentrations of each fungal isolate (sorted by a phylogenetic tree,
colours as given in the legend above). Error bars display the minimum
and maximum values (n = 3). Mean values ( ), CV and Pagel´s λ of
each variable are displayed below the graphs (**, P < 0.01).
 

   
Table 1    Fungal biomarker distribution in different fungal phyla, with mean values ± standard deviations displayed (letters indicate significant
differences among phyla; values are based on 30 isolates, 3 replicates each).

18:2ω6,9
marker
(μmol g−1

fungus)

18:1ω9c/
18:3ω3,9,12
(μmol g−1

fungus)

18:3ω6,9,12
(μmol g−1

fungus)

Total PLFA
content
(μmol g−1

fungus)

Ergosterol
content
(mg g−1

fungus)

ITS1 copy
numbers
(copies g−1

fungus)

DNA content
(μg g−1

fungus)

Ascomycota 10.8 ± 6.4a 3.8 ± 2.6b 0 ± 0c 20.5 ± 10.6 2.6 ± 1.3a 1.9×1012 ± 2.3×1012a 175 ± 122a

Basidiomycota 8.3 ± 13.1b 3.1 ± 2.6b 0 ± 0c 18.9 ± 22.1 1.1 ± 1.7b 4.5×1011 ± 7.2×1011b 38 ± 46b

Mortierellomycota 2.8 ± 0.9b 7.2 ± 0.7a 1.2 ± 0.7b 26.6 ± 2.9 0 ± 0c 2.4×1012 ± 2.7×1012a 221 ± 56a

Mucoromycota 4.3 ± 2.2ab 11.2 ± 3.3a 5.1 ± 3.7a 30.5 ± 3.6 0.6 ± 0.8bc 1.2×1012 ± 1.4×1012ab 232 ± 14a
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PLFA  marker  18:3ω6,9,12  was  even  only  present  in  these
two  phyla  (Table  1),  while  PLFA  20:4ω6,9,12,15  was  only
present  in Mortierellomycota (Fig.  2B).  By  contrast,  total
PLFA contents,  ITS1  copy  numbers  and  DNA contents  did
not show these phylogenetic patterns. For the Basidiomycota
only  three  isolates  were  available  in  total.  Two  of  them
(RLCS09  and  RLCS17),  both Agaricales,  showed  very  low
concentrations  of  all  measured  biomolecules,  i.e.,  DNA,
ergosterol and PLFAs. Since both isolates grew very well on
the  selected  media  producing  sufficient  biomass  (data  not
shown), it is not clear whether this result is a methodological
issue of the extraction methods, or relates to special physiol-
ogy  of  these  isolates.  Results  of  these Basidiomycete
isolates should be interpreted with caution and need further
investigation for verification.

 3.2 Calculation of conversion factors for soil fungal
biomarkers

Conversion factors for different biomarkers are presented in
Table  2,  based  on  biomarker  contents  in  fungal  isolates
analyzed  in  this  study  (see  above),  as  well  as  on  mean
values including further available data (Table S2).

The  conversion  factor  for  the  PLFA  biomarker  18:2ω6,9
amounted to 53.3 mg fungal C μmol−1 18:2ω6,9 using data
presented  in  this  study,  based  on  an  average  PLFA
biomarker  content  of  8.8  μmol  g−1 fungus.  Contents  of  the
PLFA  biomarker  18:2ω6,9  in  fungal  isolates  were  further
available  from  two  additional  studies  (to  the  best  of  our
knowledge). Klamer  and  Bååth  (2004) used  very  similar

x̄

x̄

methods  as  applied  here  with  a  comparable  phylogenetic
coverage,  revealing  similar  biomarker  contents  in  fungal
tissues  (  =  6.6  μmol  g−1 fungus;  Table  S2).  By  contrast,
Baldrian  et  al.  (2013) analyzed  PLFA  contents  in
basidiomycete  mushrooms,  reporting  average  18:2ω6,9
contents  4.5  times  higher  than  observed  in  our  study  (  =
39.6  μmol  g−1 fungus;  Table  S2).  These  high  values  were
also  driven  by  high  relative  contents  of  18:2ω6,9  in
extracted  PLFAs – on  average  86%,  compared  to  40%  in
our  study,  or  45  and  43%  reported  by Klamer  and  Bååth
(2004) and Federle  (1986).  Therefore,  the average conver-
sion factor calculated with all three datasets was significantly
lower  (Table  2).  The  estimate  for  a  phylogenetically
corrected  conversion  factor  based  on  all  three  datasets
(corrected by global  read abundances)  was similarly  lower,
driven by higher values for Basidiomycota in Baldrian et al.
(2013; Table  1 and  S2).  The  data  given  in  Table  S2  also
allow to calculate corrected conversion factors for individual
soils.

In  case  of  ergosterol  we  included  12  additional  studies
assessing  ergosterol  contents  in  fungal  tissues  (Table  S2).
Since ergosterol was not (or only in low amounts) observed
in Mortierellomycota and Mucoromycota (Fig. 1),  we
excluded these phyla  from the  calculation  of  all  conversion
factors for ergosterol (Table 2). The average fungal ergosterol
content  reported  in  individual  studies  varied  between  0.2
and  15.2  mg  g−1 fungus,  with  an  overall  mean  value  of
4.9  mg  g−1 fungus  (Table  S2).  Since  this  relates  to  more
than  double  the  average  ergosterol  content  in  the  isolates
analyzed here (Asco- and Basidiomycota only), the average

 

 
Fig. 2    Visualization of the PLFA marker distribution in different soil fungal isolates. (A) Principal component analysis (PCA) of
the  relative  abundance  of  different  PLFAs.  Arrows  represent  loadings  of  individual  PLFA  markers  on  PC  axes;  in  order  to
improve visibility, only arrows with loadings on the first two PC axes were labelled. Dot shape and color reflect respective phyla,
dots connected by lines are replicates of the same isolate. (B) Heatmap of the relative abundances of individual PLFAs in fungal
isolates. Colours indicate the relative intensity of PLFA marker abundances in individual isolates (light yellow: low relative abun-
dance; dark red: high relative abundance).
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conversion factor including all studies was significantly lower
(Table 2).

x̄

Based  on  the  average  ITS1  copy  numbers  in  fungal
isolates  analyzed  in  this  study  (1.8 × 1012 g−1 fungus,
Fig.  1),  we  also  calculated  a  first  proxy  for  a  conversion
factor  for  ITS1  copy  numbers:  0.264  pg  fungal  C  copy−1

ITS1  (Table  2).  Few  other  studies  calculated  ITS1  copy
numbers  in  fungal  tissues,  but  the  applied  methods  varied
strongly making direct comparisons challenging (Table S2).
Therefore,  no  average  conversion  factor  was  calculated  in
this  case.  Other  studies  not  only  applied  different  growth
conditions  (affecting  the  age  of  the  mycelium  and  DNA
contents), but also different primer pairs, DNA isolation tech-
niques and qPCR methods (Table S2).  The resulting mean
values  of  ITS1  copy  numbers  in  fungal  tissues  showed  a
wide  range:  1.9 × 109−1.3 × 1012 g−1 fungus.  Only  one
study  also  included  several  isolates  to  quantify  ITS  copy
numbers (Baldrian et al., 2013), using mushroom tissues of
Basidiomycota only.  These  analyses  resulted  in  slightly
lower  ITS  copy  numbers  than  presented  here  (  =  3.7 ×
1011 g−1 fungus),  and  less  variation  among  fungal  isolates
(CV = 78%).

 3.3 Modeling the effects of interspecific variability on the
validity of conversion factors

As shown above, biomarker contents varied strongly among
fungal isolates. The conversion factors represent an average
value based on a range of  different  isolates,  and thus may
correctly  reflect  the  overall  C  content  in  a  community  with
equal  abundances  of  these  isolates.  However,  in  case  of
abundance  shifts  among  community  members,  fungal
marker  contents  (relative  to  fungal  C  contents)  will  shift  in
parallel, resulting in an under- or over-estimation of fungal C
contents based on biomarker analyses (Fig. 3).  In modeled
fungal  communities  with  randomly  varied  abundances,  the
PLFA  biomarker  overall  revealed  more  robust  estimates  of
fungal  C  contents  than  ITS  copy  numbers  (Fig.  3).  At  a

   
Table 2    Conversion factors based on our dataset, and a literature review of available data on fungal isolates (data given in Table S2).

Soil fungal biomarker Remarks Unit Conversion factor
(our data)

Average conversion factor2

(including further datasets)
# studies
included

Ergosterol1 Reflects the abundance
of Ascomycota and
Basidiomycota only

[g fungal C g−1 ergosterol] 197.5 (CV 60%1) 95.3 (mean CV 46%) 13

PLFA marker 18:2ω6,9 Phylogenetic correction
needed in case phyla
vary among soils

[mg fungal C μmol−1

18:2ω6,9)
53.3 (CV 80%) 32.0 (mean CV 65%) 3

PLFA marker 18:2ω6,9 -
phylogenetically corrected

Correction based on read
abundances of phyla given
in Tedersoo et al. 2022

[mg fungal C μmol−1

PLFA 18:2ω6,9]
53.0 26.8 3

ITS1 copy numbers Method-specific variations [pg fungal C copy−1 ITS1] 0.264 (CV 122%) n.a.
1Data from Mucoromycota and Mortierellomycota were excluded in these calculations. 2Included datasets are summarized in Table S2;
average values given are based on mean values of all data included, while the coefficient of variation (CV) refers to the mean value of CVs
observed in different studies
 

 

 
Fig. 3    Modeling outcome of the effects of fungal community shifts
on  the  validity  of  conversion  factors  to  estimate  soil  fungal  C
contents under different diversity levels. Density distributions of the
deviation  of  biomarker  fungal  C  estimates  from  actual  fungal  C
contents  based  on  modeled  communities  are  displayed,  based  on
the  PLFA  biomarker  18:2ω6,9  (A)  and  ITS1  copy  numbers  (B).
Randomized  abundances  of  fungal  communities  with  30  isolates
were modeled at different diversity levels (1 000 runs for each diver-
sity level). For each community, the fungal C content was calculated
based on biomarker contents with conversion factors. These values
were  compared  with  the  actual  fungal  C  contents  present  in  each
community. Individual colors visualize different diversity levels.
 

8 Interspecific variability in fungal biomarkers



diversity level of 30 isolates, 95% of the calculated fungal C
estimates  deviated  between  −16%  to  +16%  from  actual
fungal C contents in case of the PLFA biomarker, while with
ITS  copy  numbers  deviations  ranged  between  −26%  and
24%.  The  diversity  level  had  a  strong  effect  on  these
numbers.  If  only  few  isolates  were  present  in  a  modeled
community, shifts in their abundances affected the validity of
biomarker  estimates  much  stronger  than  in  communities
with more fungal isolates. At the lowest diversity level of only
5 isolates, the deviation of fungal C estimates from actual C
contents varied between −68% to 87% (95% data range) for
the PLFA biomarker,  and between −78% and 127% for the
ITS copy numbers (Fig. 3).

In  theoretical  communities  of  soils  with  different  phyloge-
netic  composition,  the  estimated  fungal  C  contents  in
modeled fungal communities partly diverged from the actual
relative  fungal  C  contents  (Fig.  4).  All  three  soil  types  had
relatively  high  abundances  of Mortierellomycota (Fig.  4;
Tedersoo et al., 2022), which led to an overall underestima-
tion  of  fungal  C  contents  when  applying  our  conversion
factor for the PLFA biomarker (Fig. 4A). This underestimation
was stronger in soil types with lower relative abundances of
Ascomycota.  The  relative  difference  in  fungal  C  contents
among  soils  was  captured  correctly  when  considering  only
the  interquartile  range  of  the  modeled  communities.  In
certain  cases  of  random  community  composition,  though,
the  difference  in  fungal  abundances  among  soils  1  and  3
would  have  not  been  detected  based  on  PLFA  biomarker
data (Fig 4A).  In the case of the ITS1 marker,  high relative
abundances  of Mortierellomycota and  low  abundances  of
Basidiomycota led to a slight overestimation of actual fungal
C  contents  in  all  three  soils  (Fig.  4B).  This  deviation  was
less  pronounced  than  in  the  PLFA  biomarker,  however,
overall variability in fungal C estimates was higher.

 4 Discussion

Biomarker  analyses  in  a  collection  of  fungal  isolates
provided  novel  conversion  factors  and  revealed  the  extent
and  consequences  of  interspecific  variability  for  their  appli-
cation in  soil.  Observed fungal  PLFA biomarker  and ergos-
terol  contents  were  within  the  range  of  other  laboratory
fungal  analyses,  adding  to  the  refinement  of  existing
biomarker  conversion  factors  (Klamer  and  Bååth,  2004).
Additionally,  data  on  fungal  ITS1  copy  contents  provided  a
first  estimate  of  a  conversion  factor  for  fungal  qPCR  data,
though  interspecific  patterns  and  comparisons  with  other
data  also  highlight  pros  and  cons  for  qPCR  application  in
soil. As hypothesized, interspecific variability was high in all
biomarkers. Though in fact, it was most pronounced in ITS1
copies  g−1 fungus,  also  when  analyzing  other  (published)
datasets.  On  the  other  hand,  in  support  of  our  second

 

 
Fig. 4    Modeling  outcome  with  theoretical  composition  of  fungal
isolates  according  to  real  phyla  distribution  and  fungal  quantity
in  different  soils  (for  details  on  selected  soils  see  Supporting
Information S1), applying conversion factors for (A) PLFA 18:2ω6,9
and  (B)  ITS1  copy  numbers.  Solid  lines  represent  the  actual
relative fungal C contents in three different soils, boxplots depict the
estimated  fungal  C  contents  based  on  biomarker  contents  in
modeled  communities  of  30  fungal  isolates  (colors  distinguish  the
three  soil  types).  Fungal  abundances  were  randomly  varied  within
the boundaries of  the relative phyla distribution in  these soils.  Pie-
charts  were  added  to  depict  these  relative  abundances  based  on
Illumina  sequencing  reads  (Supporting  Information  S1);  Asc:
Ascomycota;  Bas: Basidiomycota;  Mor: Mortierellomycota;  Muc:
Mucoromycota.
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hypothesis, we detected a stronger phylogenetic bias in the
fungal PLFA biomarker and ergosterol  than in ITS1 copies,
mostly driven by differential marker profiles in Mucoromycota
and Mortierellomycota.  A  modeling  exercise  gave  first
insights into the buffering capacity of fungal diversity in soil
for  conversion  factor  accuracy:  as  hypothesized,  higher
levels of fungal diversity in soil have the potential to reduce
biases introduced by high species variability, whereas phylo-
genetic shifts in fungal communities might affect the validity
of  biomarker  comparisons  among  soils,  especially  for  the
fungal PLFA biomarker (and ergosterol; not explicitly tested
here).

 4.1 Fungal PLFA profiles and ergosterol contents as
biomarkers

Analyses of fungal PLFA profiles supported the existence of
phylum  specific  markers,  although  the  lack  of  specificity
hampers  its  full  application  potential  in  soil.  We  focused  in
this study on the fungal PLFA biomarker 18:2ω6,9, which is
widely  applied  to  estimate  fungal  abundances  and  fungal:
bacterial  ratios  in  soil.  As  suggested  in  previous  studies
(Federle,  1986; Zelles,  1997; Baldrian  et  al.,  2013),
18:2ω6,9  was  overall  the  most  abundant  PLFA  marker  in
fungal  isolates  tested  here.  This  marker  is  commonly  used
as a fungal  biomarker  due its  high concentrations in fungal
biomass  (as  confirmed here),  but  also  due  to  its  specificity
for fungi in soil microbial communities (Ruess and Chamber-
lain, 2010; Joergensen, 2022). The only bias may be given
by  plant  tissue,  i.e.,  roots,  which Joergensen  (2022)
suggests to reduce by picking them before soil PLFA extrac-
tion. Other PLFA markers enriched in fungi are not uniquely
found  across  groups  (Ruess  and  Chamberlain,  2010),
though  they  would  add  improved  phylogenetic  coverage  of
all fungal lineages. 18:2ω6,9 is only dominant in Ascomycota
and Basidiomycota, while Mortierellomycota and Mucoromy-
cota have different PLFA profiles: the presence of 18:3ω6,9,
12 in fungal isolates (even though in low concentrations) in
these phyla  confirmed this  marker  as  a “Zygomycete  peak”
(Weete,  1980; Van  der  Westhuizen  et  al.,  1994),  similar  to
the  patterns  of  18:1ω9c  (also  suggested  to  be  found  in
“Zygomycetes”)  and  18:3ω3,9,12  (Basidiomycota and
Ascomycota;  Ruess  and  Chamberlain,  2010;  Joergensen,
2022;  though  unfortunately  the  latter  two  were  only  co-
eluted  in  this  study).  Additionally,  we  detected  a  high
concentration  of  the  PLFA  20:4ω6,9,12,15  in Mortierella
isolates,  which  was  also  reported  by  Nisha  et  al.  (2011).
However, α- and γ-linolenic acid as well as arachidonic acid
are  also  abundant  in  other  microbial  groups,  i.e.,  bacteria
and algae,  microfauna and plant  debris  (Ruess and Cham-
berlain,  2010; Frostegård et  al.,  2011; Willers  et  al.,  2015).
For  these  reasons,  the  fungal  biomarker  18:2ω6,9  is  most
specific  to  describe  fungal  abundance  in  soil,  and  thus

demands  a  conversion  factor  (Joergensen  and  Wichern,
2008).

The  PLFA  analyses  presented  here  add  important  data
points  to  inform  this  PLFA  18:2ω6,9  conversion  factor.  So
far,  insufficient  data  existed  to  translate  PLFA  biomarker
values  to  fungal  C  contents  in  soil.  The  conversion  factor
based  on  fungal  isolates  analyzed  here  (53.3  mg  fungal  C
μmol−1 18:2ω6,9  PLFA)  was  within  the  range of  previously
reported  conversion  factors  (Klamer  and  Bååth,  2004:  85
mg fungal C μmol−1 18:2ω6,9 PLFA; Joergensen and Wich-
ern,  2008  based  on  additional  correlations  with  soil  hyphal
length: 107 mg fungal C μmol−1 18:2ω6,9 PLFA; Baldrian et
al.,  2013:  12  mg  fungal  C  μmol−1 18:2ω6,9  PLFA).  Since
conversion factors vary notably between studies (as well as
within selected isolates) we propose an average conversion
factor based on all available data: 32.0 mg fungal C μmol−1

18:2ω6,9 PLFA. An average value reduces biases by phylo-
genetic coverage and selection of isolates in individual stud-
ies,  and  improves  the  general  validity  of  the  conversion
factor.

The  number  of  available  reference  data  to  calculate
conversion  factors  varied  widely  among  biomarkers.  In
case of  ergosterol  contents,  comprehensive  data  are  avail-
able  (Joergensen  and  Wichern,  2008).  The  ergosterol
contents  observed  in  fungal  isolates  tested  here  were
comparatively  low,  but  within  the  range  of  previous  reports
(Table S2). Overall, 13 datasets were included for ergosterol
contents,  which  revealed  an  average  conversion  factor  of
95.3 g fungal C g−1 ergosterol. By comparison, only Baldrian
et  al.  (2013) tested  ITS  copy  contents  in  a  meaningful
number  of  fungal  isolates  (to  the  best  of  our  knowledge).
This lack of data impairs our understanding of ITS copies as
a fungal biomarker.

 4.2 Applicability of a conversion factor for ITS1 qPCR data

Knowledge about ITS copies in fungal biomass is important
for the interpretation of qPCR based fungal quantification in
soil. The large deviation among fungal ITS copy contents in
different  studies  was  likely  driven  by  methodological  differ-
ences:  especially  differences  in  DNA  extraction  methods
and  primers  applied  (Table  S2)  can  result  in  varying  DNA
extraction  efficiencies  (Delmont  et  al.,  2012)  and  qPCR
results,  even  when  different  primer  pairs  target  the  same
gene (Thijs  et  al.,  2017).  To  allow for  comparability  among
datasets, methods of qPCR quantification of soil fungi need
to  be  standardized,  as  is  the  case  for  PLFA  or  ergosterol
analyses (Frostegård et al.,  1991; Sae-Tun et al.,  2020). In
our  study,  fungal  ITS1  copy  contents  led  to  a  conversion
factor  of  0.264  pg  fungal  C  copy−1 ITS1.  However,  the  CV
among  isolates  was  high  with  122%  and  higher  than  in
PLFA  biomarker  and  ergosterol  contents.  The  large  inter-
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specific  variability  in  ITS1  copies  is  likely  driven  by  two
components:  copy  number  variation  within  the  genome,  as
well  as  variability  in  total  DNA  concentrations  (both  corre-
lated, R² = 0.17, Fig. S1b). In fungi, high rDNA copy number
variation  (including  the  ITS  region)  was  reported  based  on
sequenced genome analyses: in 91 fungal taxa Lofgren et al.
(2019) detected a wide range of numbers: 14 to 1 442 rDNA
copies in the genome. In their analyses, Ascomycota had on
average  lower  copy  numbers  compared  to Basidiomycota
and early diverging fungal lineages. On top of this variation,
DNA contents  also  vary  among  isolates:  in  our  study  DNA
contents showed a CV of 66% among fungal isolates (data
not presented). Baldrian et al. (2013) reported similar varia-
tion−CV of 62% in fungal DNA contents. Thus, the resulting
high  variation  among  isolates  in  derived  ITS  copies  g−1

fungus is an interplay of copy number variation in genomes
and variable total DNA contents.

Such high variation in ITS copies and DNA contents is not
only problematic for finding valid conversion factors and for
comparing  fungal  abundances  among  soils  or  treatments,
but it is an important issue to consider in sequencing studies
(Větrovský and Baldrian, 2013; Lavrinienko et al., 2021). As
shown by data  presented here,  not  only  preferential  primer
binding to certain sequences, but also interspecific variability
in ITS copy contents may bias the assignment of sequencing
read  numbers  to  actual  fungal  species  abundances  in  soil.
An  improved  understanding  of  these  patterns  may  also
improve  the  interesting  application  to  compare  fungal  (or
bacterial) biomass estimates with read numbers of individual
taxa (Zhang et al., 2017; Lewe et al., 2021).

 4.3 Accuracy of conversion factors in highly diverse soil
samples

Variability  in  biomarker  contents  among  fungal  species  is
evident; but, on the other hand, microbial diversity in soil  is
exceptionally high (Anthony et al., 2023). This has led to the
hypothesis that high species diversity in soil buffers against
variability in marker contents. Interspecific variability was not
only  high  in  ITS  copies,  but  also  in  PLFA  biomarker  and
ergosterol  contents  in  our  fungal  isolates  (CV  of  80%  and
84%,  respectively),  similar  to  values  detected  in  other
datasets  (Table  S2).  Consequently,  differences  in  fungal
species  composition  might  impact  the  comparability  of
conversion  factors  applied  to  different  soil  samples  (Nurika
et  al.,  2018):  a  biomarker  conversion  factor  only  provides
one value for  the complete fungal  community,  even though
biomarker:fungal  C  ratios  differ  among  species.  Variability
leading to inaccurate conversion factors not only affects the
correct  translation  of  biomarker  contents  to  fungal  C,  but
also the validity of comparisons among soils and treatments
based  on  biomarker  analyses.  Therefore,  the  following

discussions  not  only  concern  conversion  factors,  but  the
general interpretation of soil fungal biomarker analyses.

Our  modeling  approach  confirmed  that  differences  in
species composition affect the validity of conversion factors,
even stronger for ITS1 copies due to high variability among
species. However, in line with our third hypothesis, the more
species  present  in  a  community,  the  lower  the  impact  of
interspecific  variability,  i.e.,  the  higher  the  accuracy  of
conversion  factors  (and  correct  assignment  of  biomarker
contents to actual  fungal  biomass).  Indeed,  this  is  a funda-
mental, universal principle often referred to as the Regression
Toward  the  Mean  (Stigler,  1997).  In  the  present  case,
sampling  a  greater  number  of  diverse  taxa  with  inherently
different  ergosterol,  PLFA  or  ITS1  copies  will  cause  these
measurable  values  to  converge  upon  the  true  mean.  Even
though these conclusions are based on the modeling of  30
isolates only,  we think these principles also apply in  situ to
soil  fungal  communities.  The  range  of  biomarker  values  in
our fungal isolates was comparable to other studies (Barajas-
Aceves et al., 2002; Klamer and Bååth, 2004; Baldrian et al.,
2013), and broadly covered diverse fungal lineages. In case
fungal marker contents are comparable in soil (a prerequisite
for  the  application  of  these  biomarkers  in  general,  see
discussion  below),  the  even  larger  diversity  of  fungal
communities in soil samples should only reinforce the accu-
racy  of  conversion  factors  and  comparability  of  biomarker
analyses (Tedersoo et al., 2020).

Beside  interspecific  variability,  also  phylogenetic  biases
are  problematic  in  soil  biomarker  application.  Differences
among  phyla  were  present  in  fungal  PLFA  biomarker  and
ergosterol  contents.  Ergosterol  generally  only  represents
Ascomycota and Basidiomycota (Weete  et  al.,  2010),  as
confirmed  by  our  data.  Similarly,  the  PLFA  biomarker  was
significantly  reduced  in Mortierellomycota and Mucoromy-
cota.  This  difference  among  phyla  in  PLFA  biomarker
contents  indeed  led  to  an  underestimation  of  fungal  C
contents in soils characterized by high relative abundances
of  these  phyla,  when  applying  the  proposed  conversion
factor in theoretical models. Especially in incubation experi-
ments  with  glucose  this  bias  must  be  considered,  since
Mucoromycota and Mortierelloymycota represent  early-
successional “sugar fungi” (Kramer et al., 2016; Pawłowska
et al.,  2019).  By contrast,  there was no phylogenetic signal
detected  in  ITS1  copies  g-1 fungus,  thus,  accuracy  of  this
conversion  factor  was  comparable  among  soils  despite
contrasting  abundances  of  fungal  phyla.  The  agricultural
soils used here as a modeling template were characterized
by  high  read  abundances  of Mortierellomycota (30%–59%,
Fig. 4). Tedersoo et al. (2022) reported much lower relative
sequence abundances for this phylum in a global comparison
(an  average  8%  of  reads  for Mortierellomycota,  3%
Mucoromycota),  though  agricultural  management  and  envi-
ronmental  factors  can  indeed  increase  their  relative  abun-
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dances  (Wang  et  al.,  2020; Li  et  al.,  2023).  These  groups
are often overlooked as early diverging fungal lineages, but
they include relevant and abundant saprobic species in soil
and should be covered by fungal C estimates (Pawłowska et
al.,  2019; Tedersoo et  al.,  2022).  Thus,  regarding  phyloge-
netic  coverage  and  comparability,  ITS  copies  represent  a
more  suitable  fungal  biomarker.  Differences  among
Ascomycota and Basidiomycota cannot  be  resolved  based
on fungal isolates included here (two of three Basidiomycota
isolates had low extraction efficiencies for all biomarkers). In
PLFA biomarker and ergosterol contents there seems to be
no  substantial  difference  among  these  two  phyla  (Antibus
and Sinsabaugh, 1993; Barajas-Aceves et al., 2002; Klamer
and Bååth,  2004; Baldrian et  al.,  2013).  Potentially,  reports
about  low  rDNA  copy  numbers  in Ascomycota suggest
phylogenetic biases also in qPCR data (Lofgren et al., 2019).
In  an  ecological  context,  variation  in  organismal  rDNA  is
often  correlated  with  high  growth  rates  (Sterner  and  Elser,
2002; Lavrinienko et al., 2021), and DNA contents correlate
with  mycelial  growth  rates  in  isolates  tested  here  (unpub-
lished  data).  As  a  consequence,  environmental  factors
selecting  for  certain  fungal  strategies  may  also  affect  ITS
copies present in soil fungal communities.

 4.4 Open questions in quantifying fungi in soil

Beside  interspecific  variability  and  phylogenetic  diversity,
there remain further open questions regarding the application
of  conversion  factors  for  soil  fungal  biomarkers:  (1)  the
comparability of fungal marker contents in laboratory analy-
ses  compared  to  fungi  living  in  their  natural  soil  habitat;
(2)  age-related  shifts  in  biomarker  contents  and  its  physio-
logical  significance for  fungal  growth stages;  (3)  the impact
of fungal spores on soil biomarker profiles.

Relative  biomarker  contents  in  fungal  biomass  vary  with
environmental  conditions  (Wallander  et  al.,  2013; Joer-
gensen,  2022).  Here,  culturing  media  were  adjusted  to
obtain sufficient pure fungal biomass for biomarker analyses.
However, rich media based on glucose and inorganic nutri-
ents  reduce  fungal  expenses  for  enzymes  (Hsieh  et  al.,
2014),  induce  internal  storage  mechanisms  (Mason-Jones
et al., 2023) and likely also reduce the necessity of internal
recycling of cellular components (Heaton et al., 2016). Fatty
acid  marker  composition  seems  to  be  relatively  robust  to
environmental  changes  (Stahl  and  Klug,  1996; Klamer  and
Bååth,  2004),  but  shifts  in  quantitative  fungal  biomarker
contents have not been tested. The higher conversion factor
for the fungal PLFA biomarker reported by Joergensen and
Wichern (2008) based on indirect soil analyses might reflect
such decreased PLFA concentration in fungi growing in soil.
In the case of ergosterol, there exists more evidence for its
variation  with  culturing  conditions,  nutrient  and  carbon
supply,  but  results  remain  inconclusive  (Charcosset  and

Chauvet, 2001; Niemenmaa et al., 2008; Song et al., 2014).
While Klamer  and  Bååth  (2004) reported  lower  ergosterol
contents  on  complex  C  media  compared  to  simple  sugars,
Niemenmaa  et  al.  (2008) found  high  fungal  ergosterol
content under C starvation. Similarly, DNA contents may be
reduced  under  resource  limitations,  leading  to  higher
conversion factors in soil (Grimmett et al., 2013; Lavrinienko
et  al.,  2021).  In  conclusion,  we  do  not  only  recommend
determining  fungal  biomarker  contents  in  more  fungal
species  in  future  studies,  but  also  when  cultivated  under
more soil-like resource conditions in order to refine conver-
sion factors even further.

Biomarker  contents  have  been  repeatedly  shown  to  be
age-related  (Klamer  and  Bååth,  2004; Niemenmaa  et  al.,
2008; Song et al., 2014). Mycelial growth is characterized by
particular  physiological  mechanisms.  Hyphal  tip  growth
leads to internal  recycling of cell  components accompanied
by  vacuolization  of  distant/older  hyphae  (Camenzind  et  al.,
2021). This physiological aging/senescence primarily affects
the  cytoplasm  (Klein  and  Paschke,  2004),  but  also  mem-
brane and cell wall composition to a certain extent (Puszta-
helyi  et  al.,  2006).  Experimental  evidence does not support
a  consistently  negative  correlation  of  the  cell  membrane
components  PLFA  and  ergosterol  with  culturing  age  (Stahl
and Klug, 1996; Charcosset and Chauvet, 2001; Niemenmaa
et  al.,  2008).  By  contrast,  DNA  concentrations  in  fungal
biomass  (together  with  other  cytoplasmic  components)  are
reduced over time (Grimmett et al., 2013; Camenzind et al.,
2021).  Consequently,  PLFA and  ergosterol  components,  in
contrast  to  DNA,  may include more inactive and senescing
mycelial  fractions.  Still,  these  biomarkers  represent  a  valid
estimate of fungal biomass, since turnover rates of ergosterol
and PLFA are relatively high in soil  (Frostegård and Bååth,
1996; Miltner et al., 2012; Ekblad et al., 2016). One conclu-
sion  may  be  that  the  combination  and  ratios  of  different
fungal  biomarkers  provide  interesting  insights  into  fungal
activity  in  soil:  shifts  in  DNA  (and  especially  RNA):PLFA
content ratios could provide insights into the inactive hyphal
fraction.  This  can  further  be  combined  with  amino  sugar
analyses to determine dead fungal proportions (Joergensen,
2018),  or  NLFA  marker  analyses  as  an  indicator  of  fungal
storage (Gorka et al., 2023).

Similar  to  uncertainties  in  sequencing  studies,  the  contri-
bution  of  fungal  spores  to  soil  biomarker  contents  remains
unclear.  Spore  production  −  sexual  but  particularly
asexual  −  is  an  integral  part  of  fungal  development  in  soil
(Domsch  et  al.,  2007).  Fungal  sporulation  rates  are  high
(Camenzind et al., 2022) and indirect assessments of spore
contributions to colony forming units approve their abundant
presence in soil (Thorn et al., 1996). The fatty acid profile in
spores is comparable to hyphae, as shown for basidiospores
(Brondz  et  al.,  2004),  though  quantitative  PLFA  contents
remain  unknown.  In  arbuscular  mycorrhizal  fungi,  the  fatty
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acid profile (with 16:1ω5 as marker for arbuscular mycorrhizal
fungi) is similar to hyphae (Olsson and Johansen, 2000), but
spores  were  enriched  in  storage  NLFA.  The  PLFA  marker
16:1ω5  is  therefore  frequently  used  to  address  the  occur-
rence of growing hyphae in comparison to spores (Ngosong
et al., 2012). Independent of exact values, fungal spores do
contain relevant concentrations of fungal biomarkers, includ-
ing ergosterol and DNA (Pasanen et al., 1999). As a conse-
quence, soil fungal biomarkers not only capture hyphae, but
also  spores  present  in  soil,  with  the  relative  contribution
depending on spore numbers present in soil.

 5 Conclusions and outlook

The  data  of  our  study  provide  an  update  of  soil  fungal
biomarker conversion factors and shed light on the relevance
of  interspecific  variability.  At  this  stage,  fungal  PLFA
biomarkers appear most comparable and widely applied (Yu
et al., 2022). The phylogenetic coverage of PLFA 18:2ω6,9
was  higher  than  for  ergosterol,  though  still  problematic  for
early fungal lineages, while interspecific variability was lower
than in ITS1 copies. Potential deviations in PLFA conversion
factors  (and  also  other  biomarker  types)  under  natural  soil
conditions  should  be  further  evaluated  to  correctly  identify
related  fungal  C  contents.  We  further  highly  recommend
refining  the  application  of  a  conversion  factor  for  fungal
qPCR data in future studies. Despite high interspecific vari-
ability  −  that  may  be  negligible  in  naturally  diverse  soils  −
qPCR results  based  on  ITS  sequences  provide  the  benefit
of having the least phylogenetic bias and absolute specificity
for fungi (in contrast to problematic biases in PLFA). Combi-
nations  of  these  data  with  stable  isotope  probing  and
sequencing  data  provide  interesting  avenues  for  future  in
depth  microbial  community  analyses,  and  a  better
resolution  for  fungal  guilds  (i.e.,  saprobes,  pathogens  and
mycorrhizae; Nuccio  et  al.,  2022).  A  combined  analysis  of
different  biomarkers  (including  also  RNA  (active),  NLFA
(storage)  and  amino  sugars  (necromass))  would  aid  for  a
precise quantification of fungi in soil, in addition to interesting
insights  into  the  physiological  status  of  soil  fungi  under
different conditions (Canarini et al., 2023).

Conversion factors for bacterial biomarkers are as relevant
regarding  the  wide  application  of  fungal:bacterial  ratios  in
soil analyses. Correlations of bacterial cell counts with PLFA
concentrations  have  been  studied,  either  based  on  direct
plate  counts  or  (primarily E.  coli)  cultures  (Frostegård  and
Bååth,  1996; Green  and  Scow,  2000).  These  conversion
factors  are  partly  applied  (e.g.,  Zhang  et  al.,  2017),  but  no
consensus was found so far (Willers et al., 2015). Similarly,
there  is  no  consensus  on  the  conversion  of  total  microbial
PLFA  contents  to  soil  microbial  biomass  C  (Leckie  et  al.,

2004; Joergensen  and  Emmerling,  2006; Willers  et  al.,
2015).  Conversion  factors  for  bacterial  qPCR  values  pose
comparable challenges as discussed here for fungi (Junicke
et al.,  2014; Zhang et al.,  2017),  but may give more robust
results,  especially  regarding  the  diversity  of  PLFA  markers
involved in bacterial quantification (Ruess and Chamberlain,
2010).

To conclude, the precise quantification of microbial groups
is  essential  for  understanding  soil  C  dynamics  (He  et  al.,
2021). Biomarker analyses provide the best proxy for fungal
and  bacterial  biomass,  still,  an  improved  understanding  is
needed to fully exploit  the potential  of these data. Our data
add relevant aspects on the variability in biomarker contents
among  fungal  communities,  and  improve  the  conversion  to
fungal C contents. Such methodological insights are needed
to  improve  the  mechanistic  understanding  of  underlying
microbial  physiology,  which  should  be  optimized  prior  to
their inclusion in global soil C models.
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