15,227 research outputs found

    To Pin or not to Pin - Pinterest and copyright

    Get PDF

    Effect of exercise referral schemes in primary care on physical activity and improving health outcomes: Systematic review and meta-analysis

    Get PDF
    This is an open access article - Copyright @ 2011 BMJObjective: To assess the impact of exercise referral schemes on physical activity and health outcomes. Design: Systematic review and meta-analysis. Data sources Medline, Embase, PsycINFO, Cochrane Library, ISI Web of Science, SPORTDiscus, and ongoing trial registries up to October 2009. We also checked study references. Study selection Design: randomised controlled trials or non-randomised controlled (cluster or individual) studies published in peer review journals. Population: sedentary individuals with or without medical diagnosis. Exercise referral schemes defined as: clear referrals by primary care professionals to third party service providers to increase physical activity or exercise, physical activity or exercise programmes tailored to individuals, and initial assessment and monitoring throughout programmes. Comparators: usual care, no intervention, or alternative exercise referral schemes. Results Eight randomised controlled trials met the inclusion criteria, comparing exercise referral schemes with usual care (six trials), alternative physical activity intervention (two), and an exercise referral scheme plus a self determination theory intervention (one). Compared with usual care, follow-up data for exercise referral schemes showed an increased number of participants who achieved 90-150 minutes of physical activity of at least moderate intensity per week (pooled relative risk 1.16, 95% confidence intervals 1.03 to 1.30) and a reduced level of depression (pooled standardised mean difference −0.82, −1.28 to −0.35). Evidence of a between group difference in physical activity of moderate or vigorous intensity or in other health outcomes was inconsistent at follow-up. We did not find any difference in outcomes between exercise referral schemes and the other two comparator groups. None of the included trials separately reported outcomes in individuals with specific medical diagnoses. Substantial heterogeneity in the quality and nature of the exercise referral schemes across studies might have contributed to the inconsistency in outcome findings. Conclusions Considerable uncertainty remains as to the effectiveness of exercise referral schemes for increasing physical activity, fitness, or health indicators, or whether they are an efficient use of resources for sedentary people with or without a medical diagnosis.This project was funded by the National Institute for Health Research Health Technology Assessment (NIHR HTA) programme (project number 08/72/01) (www.hta.ac.uk/)

    A Transport Analysis of the BEEM Spectroscopy of Au/Si Schottky Barriers

    Get PDF
    A systematic transport study of the ballistic electron emission microscopy (BEEM) of Au/Si(100) and Au/Si(111) Schottky barriers for different thicknesses of the metal layer and different temperatures is presented. It is shown that the existing experimental data are compatible with a recently predicted bandstructure-induced non-forward electron propagation through the Au(111) layer.Comment: 5 pages, Latex-APS, 1 postscript figure, http://www.icmm.csic.es/Pandres/pedro.htm. Phys. Stat. Sol. (b) (to appear), HCIS-10 Conf, Berlin 199

    Lung aeration on post-mortem magnetic resonance imaging is a useful marker of live birth versus stillbirth.

    Get PDF
    Aim of this study was to investigate whether lung assessment on post-mortem magnetic resonance imaging (PMMR) can reliably differentiate between live birth and stillbirth

    Involvement of N-methyl-D-aspartate receptors in plasticity induced by paired corticospinal-motoneuronal stimulation in humans

    Full text link
    Plasticity can be induced at human corticospinalmotoneuronal synapses by delivery of repeated, paired stimuli to corticospinal axons and motoneurons in a technique called paired corticospinal-motoneuronal stimulation (PCMS). To date, the mechanisms of the induced plasticity are unknown. To determine whether PCMS-induced plasticity is dependent on N-methyl-D-aspartate receptors (NMDARs), the effect of the noncompetitive NMDAR antagonist dextromethorphan on PCMS-induced facilitation was assessed in a 2-day, double-blind, placebo-controlled experiment. PCMS consisted of 100 pairs of stimuli, delivered at an interstimulus interval that produces facilitation at corticospinal-motoneuronal synapses that excite biceps brachii motoneurons. Transcranial magnetic stimulation elicited corticospinal volleys, which were timed to arrive at corticospinal-motoneuronal synapses just before antidromic potentials elicited in motoneurons with electrical brachial plexus stimulation. To measure changes in the corticospinal pathway at a spinal level, biceps responses to cervicomedullary stimulation (cervicomedullary motor evoked potentials, CMEPs) were measured before and for 30 min after PCMS. Individuals who displayed a ≥10% increase in CMEP size after PCMS on screening were eligible to take part in the 2-day experiment. After PCMS, there was a significant difference in CMEP area between placebo and dextromethorphan days (P ~ 0.014). On the placebo day PCMS increased average CMEP areas to 127 = 46% of baseline, whereas on the dextromethorphan day CMEP area was decreased to 86 = 33% of baseline (mean = SD; placebo: n ~ 11, dextromethorphan: n ~ 10). Therefore, dextromethorphan suppressed the facilitation of CMEPs after PCMS. This indicates that plasticity induced at synapses in the human spinal cord by PCMS may be dependent on NMDARs. NEW & NOTEWORTHY Paired corticospinal-motoneuronal stimulation can strengthen the synaptic connections between corticospinal axons and motoneurons at a spinal level in humans. The mechanism of the induced plasticity is unknown. In our 2-day, double-blind, placebo-controlled study we show that the N-methyl-D-aspartate receptor (NMDAR) antagonist dextromethorphan suppressed plasticity induced by paired corticospinal-motoneuronal stimulation, suggesting that an NMDAR-dependent mechanism is involved

    Investigating Cardiac Motion Patters Using Synthetic High-Resolution 3D Cardiovascular Magnetic Resonance Images and Statistical Shape Analysis

    Get PDF
    Diagnosis of ventricular dysfunction in congenital heart disease is more and more based on medical imaging, which allows investigation of abnormal cardiac morphology and correlated abnormal function. Although analysis of 2D images represents the clinical standard, novel tools performing automatic processing of 3D images are becoming available, providing more detailed and comprehensive information than simple 2D morphometry. Among these, statistical shape analysis (SSA) allows a consistent and quantitative description of a population of complex shapes, as a way to detect novel biomarkers, ultimately improving diagnosis and pathology understanding. The aim of this study is to describe the implementation of a SSA method for the investigation of 3D left ventricular shape and motion patterns and to test it on a small sample of 4 congenital repaired aortic stenosis patients and 4 age-matched healthy volunteers to demonstrate its potential. The advantage of this method is the capability of analyzing subject-specific motion patterns separately from the individual morphology, visually and quantitatively, as a way to identify functional abnormalities related to both dynamics and shape. Specifically, we combined 3D, high-resolution whole heart data with 2D, temporal information provided by cine cardiovascular magnetic resonance images, and we used an SSA approach to analyze 3D motion per se. Preliminary results of this pilot study showed that using this method, some differences in end-diastolic and end-systolic ventricular shapes could be captured, but it was not possible to clearly separate the two cohorts based on shape information alone. However, further analyses on ventricular motion allowed to qualitatively identify differences between the two populations. Moreover, by describing shape and motion with a small number of principal components, this method offers a fully automated process to obtain visually intuitive and numerical information on cardiac shape and motion, which could be, once validated on a larger sample size, easily integrated into the clinical workflow. To conclude, in this preliminary work, we have implemented state-of-the-art automatic segmentation and SSA methods, and we have shown how they could improve our understanding of ventricular kinetics by visually and potentially quantitatively highlighting aspects that are usually not picked up by traditional approaches

    Muscle fiber and motor unit behavior in the longest human skeletal muscle

    Get PDF
    The sartorius muscle is the longest muscle in the human body. It is strap-like, up to 600 mm in length, and contains five to seven neurovascular compartments, each with a neuromuscular endplate zone. Some of its fibers terminate intrafascicularly, whereas others may run the full length of the muscle. To assess the location and timing of activation within motor units of this long muscle, we recorded electromyographic potentials from multiple intramuscular electrodes along sartorius muscle during steady voluntary contraction and analyzed their activity with spike-triggered averaging from a needle electrode inserted near the proximal end of the muscle. Approximately 30% of sartorius motor units included muscle fibers that ran the full length of the muscle, conducting action potentials at 3.9 +/- 0.1 m/s. Most motor units were innervated within a single muscle endplate zone that was not necessarily near the midpoint of the fiber. As a consequence, action potentials reached the distal end of a unit as late as 100 ms after initiation at an endplate zone. Thus, contractile activity is not synchronized along the length of single sartorius fibers. We postulate that lateral transmission of force from fiber to endomysium and a wide distribution of motor unit endplates along the muscle are critical for the efficient transmission of force from sarcomere to tendon and for the prevention of muscle injury caused by overextension of inactive regions of muscle fibers

    Supraspinal fatigue in human inspiratory muscles with repeated sustained maximal efforts

    Full text link
    To investigate the involvement of supraspinal fatigue in the loss of maximal inspiratory pressure (PImax), we fatigued the inspiratory muscles. Six participants performed 5 sustained maximal isometric inspiratory efforts (15-s contractions, duty cycle ~75%) which reduced PImax, as measured from esophageal and mouth pressure, to around half of their initial maximums. Transcranial magnetic stimulation (TMS) delivered over the motor cortex near the beginning and end of each maximal effort evoked superimposed twitch-like increments in the ongoing PImax, increasing from ~1.0% of PImax in the unfatigued contractions to ≥40% of ongoing PImax for esophageal and mouth pressures. The rate of increase in the superimposed twitch as PImax decreased with fatigue was not significantly different between the esophageal and mouth pressure measures. The inverse relationship between superimposed twitch pressure and PImax indicates a progressive decline in the ability of motor cortical output to drive the inspiratory muscles maximally, leading to the development of supraspinal fatigue. TMS also evoked silent periods in the electromyographic recordings of diaphragm, scalenes, and parasternal intercostal. The duration of the silent period increased with fatigue in all three muscles, which suggests greater intracortical inhibition, with the largest change observed in the diaphragm. The peak rate of relaxation in pressure during the silent period slowed as fatigue developed, indicating peripheral contractile changes in the active inspiratory muscles. These changes in the markers of fatigue show that both central and peripheral fatigue contribute to the loss in PImax when inspiratory muscles are fatigued with repeated sustained maximal efforts. NEW & NOTEWORTHY When the inspiratory muscles are fatigued with repeated sustained maximal efforts, supraspinal fatigue, a component of central fatigue, contributes to the loss in maximal inspiratory pressure. The presence of supraspinal fatigue was confirmed by the increase in amplitude of twitch-like increments in pressure evoked by motor cortical stimulation during maximal efforts, indicating that motor cortical output was not maximal as extra muscle force could be generated to increase inspiratory pressure

    State of the Art MR Enterography Technique

    Get PDF
    ABSTRACT: Magnetic resonance enterography (MRE) is a well-established imaging technique that is commonly used for evaluating a variety of bowel diseases, most commonly inflammatory bowel disease which is increasing in prevalence. Inflammatory bowel disease is composed of 2 related, but distinct disease entities: Crohn disease (CD) and ulcerative colitis. In ulcerative colitis, inflammation is generally limited to the mucosa and invariably involves the rectum, and often the more proximal colon. CD is typified by transmural inflammation with skip lesions occurring anywhere from the mouth to anus, but characteristically involves the terminal ileum. The transmural involvement of CD may lead to debilitating ulceration and, ultimately, development of sinus tracts, which can be associated with abscesses and fistulae as extraenteric manifestations of the disease. Because much of the small bowel and extraenteric disease cannot be adequately assessed with conventional endoscopy, imaging plays a crucial role in initial diagnosis and follow-up. MRE does not use ionizing radiation which is important for these patients, many of which present earlier in life and may require multiple imaging examinations. In this article, we review the clinical indications, patient preparation, and optimal technique for MRE. We also discuss the role and proper selection of intravenous gadolinium-based contrast material, oral contrast material, and antiperistaltic agents, including pediatric considerations. Finally, we review the recommended and optional pulse sequence selection, including discussion of a "time-efficient" protocol, reviewing their utility, advantages, and limitations. Our hope is to aid the radiologist seeking to develop a robust MRE imaging program for the evaluation of bowel disease

    Indigenous HCl

    Full text link
    • …
    corecore