2,184 research outputs found

    Assessing human skin color from uncalibrated images

    Get PDF
    Images of a scene captured with multiple cameras will have different color values due to variations in color rendering across devices. We present a method to accurately retrieve color information from uncalibrated images taken under uncontrolled lighting conditions with an unknown device and no access to raw data, but with a limited number of reference colors in the scene. The method is used to assess skin tones. A subject is imaged with the calibration target in the scene. This target is extracted and its color values are used to compute a color correction transform that is applied to the entire image. We establish that the best mapping is done using a target consisting of skin colored patches representing the whole range of human skin colors. We show that color information extracted from images is well correlated with color data derived from spectral measurements of skin. We also show that skin color can be consistently measured across cameras with different color rendering and resolutions ranging from 0.1 Mpixels to 4.0 Mpixels

    The Iowa Homemaker vol.4, no.12

    Get PDF
    Table of Contents How Shall the Family Invest Its Savings? by Dr. Hazel Kyrk, page 1 The Home Economics Vodvil by Thirza Hull, page 2 The Junior-Senior Banquet by Alma Riemenschneider, page 3 With the Iowa State Home Economics Association by Avis Talcott, page 4 Electricity in the Home by Fred C. Fenton, page 5 Perennials for Perpetual Bloom by Juanita Beard, page 6 Editorial, page 7 The Eternal Question, page 8 Who’s There and Where by Pearl Harris, page 9 Homemaker as Citizen, page 9 Spring Offers Us a Change by Margaret Taylor, page 10 A Spring Tonic by Viola Jammer, page 1

    Differential segregation in a cell-cell contact interface: the dynamics of the immunological synapse

    Get PDF
    Receptor-ligand couples in the cell-cell contact interface between a T cell and an antigen-presenting cell form distinct geometric patterns and undergo spatial rearrangement within the contact interface. Spatial segregation of the antigen and adhesion receptors occurs within seconds of contact, central aggregation of the antigen receptor then occurring over 1-5 min. This structure, called the immunological synapse, is becoming a paradigm for localized signaling. However, the mechanisms driving its formation, in particular spatial segregation, are currently not understood. With a reaction diffusion model incorporating thermodynamics, elasticity, and reaction kinetics, we examine the hypothesis that differing bond lengths (extracellular domain size) is the driving force behind molecular segregation. We derive two key conditions necessary for segregation: a thermodynamic criterion on the effective bond elasticity and a requirement for the seeding/nucleation of domains. Domains have a minimum length scale and will only spontaneously coalesce/aggregate if the contact area is small or the membrane relaxation distance large. Otherwise, differential attachment of receptors to the cytoskeleton is required for central aggregation. Our analysis indicates that differential bond lengths have a significant effect on synapse dynamics, i.e., there is a significant contribution to the free energy of the interaction, suggesting that segregation by differential bond length is important in cell-cell contact interfaces and the immunological synapse

    Euclid space mission: a cosmological challenge for the next 15 years

    Get PDF
    Euclid is the next ESA mission devoted to cosmology. It aims at observing most of the extragalactic sky, studying both gravitational lensing and clustering over ∼\sim15,000 square degrees. The mission is expected to be launched in year 2020 and to last six years. The sheer amount of data of different kinds, the variety of (un)known systematic effects and the complexity of measures require efforts both in sophisticated simulations and techniques of data analysis. We review the mission main characteristics, some aspects of the the survey and highlight some of the areas of interest to this meetingComment: to appear in Proceedings IAU Symposium No. 306, 2014, "Statistical Challenges in 21st Century Cosmology", A.F. Heavens, J.-L. Starck & A. Krone-Martins, ed

    Quantum probability distribution of arrival times and probability current density

    Get PDF
    This paper compares the proposal made in previous papers for a quantum probability distribution of the time of arrival at a certain point with the corresponding proposal based on the probability current density. Quantitative differences between the two formulations are examined analytically and numerically with the aim of establishing conditions under which the proposals might be tested by experiment. It is found that quantum regime conditions produce the biggest differences between the formulations which are otherwise near indistinguishable. These results indicate that in order to discriminate conclusively among the different alternatives, the corresponding experimental test should be performed in the quantum regime and with sufficiently high resolution so as to resolve small quantum efects.Comment: 21 pages, 7 figures, LaTeX; Revised version to appear in Phys. Rev. A (many small changes

    High-sensitivity diamond magnetometer with nanoscale resolution

    Full text link
    We present a novel approach to the detection of weak magnetic fields that takes advantage of recently developed techniques for the coherent control of solid-state electron spin quantum bits. Specifically, we investigate a magnetic sensor based on Nitrogen-Vacancy centers in room-temperature diamond. We discuss two important applications of this technique: a nanoscale magnetometer that could potentially detect precession of single nuclear spins and an optical magnetic field imager combining spatial resolution ranging from micrometers to millimeters with a sensitivity approaching few femtotesla/Hz1/2^{1/2}.Comment: 29 pages, 4 figure

    Circulating CD34+ Progenitor Cells and Risk of Mortality in a Population with Coronary Artery Disease

    Get PDF
    RATIONALE: Low circulating progenitor cell (PC) numbers and activity may reflect impaired intrinsic regenerative/reparative potential, but it remains uncertain whether this translates into a worse prognosis. OBJECTIVES: To investigate whether low numbers of PCs associate with a greater risk of mortality in a population at high cardiovascular risk. METHODS & RESULTS: Patients undergoing coronary angiography were recruited into two cohorts (1, n=502 and 2, n=403) over separate time periods. PCs were enumerated by flow cytometry as CD45(med+) blood mononuclear cells expressing CD34, with additional quantification of subsets co-expressing CD133, VEGFR2 and CXCR4. Coefficient of variation for CD34 cells was 2.9% and 4.8%, 21.6% and 6.5% for the respective subsets. Each cohort was followed for a mean of 2.7 and 1.2 years, respectively, for the primary endpoint of all-cause death. There was an inverse association between CD34+ and CD34+/CD133+ cell counts and risk of death in Cohort 1 (β=−0.92, p=0.043 and β=−1.64, p=0.019, respectively) that was confirmed in Cohort 2 (β=−1.25, p=0.020 and β=−1.81, p=0.015, respectively). Covariate adjusted HRs in the pooled cohort (n=905) were 3.54 (1.67-7.50) and 2.46 (1.18-5.13), respectively. CD34+/CD133+ cell counts improved risk prediction metrics beyond standard risk factors. CONCLUSION: Reduced circulating PC counts, identified primarily as CD34+ mononuclear cells or its subset expressing CD133 are associated with risk of death in individuals with coronary artery disease, suggesting that impaired endogenous regenerative capacity is associated with increased mortality. These findings have implications for biological understanding, risk prediction and cell selection for cell based therapies

    A method of forming composite structures using in situ -formed liquid crystal polymer fibers in a thermoplastic matrix

    Full text link
    A new high speed and potentially economical method of creating a composite material and structures therefrom is tested. The method consists of spinning composite fibers from a melt blend of a thermoplastic with a liquid crystal polymer (LCP). Discontinuous fibrils of the LCP are formed in situ during the spinning process. These composite fibers are aligned and placed in a mold and heated to melt the thermoplastic matrix, but not the fibrils. A finished composite structure reinforced by the LCP fibrils is obtained when the thermoplastic phase is consequently consolidated. Our experiments show the proposed process is reasonable for an easily processed polystyrene matrix. High modulus fibrils with essentially infinite L/D ratios are readily produced in the extrusion process using 40 wt% of a wholly aromatic poly(ester-co-amide) LCP from Celanese. The integrity and alignment of the LCP fibrils is retained in the molding step. Mechanical tests show that the fibers produced by high shear rate processing have a stiffness approaching 23 GPa and match an axial rule-of-mixtures theory. The use of polystyrene resulted in brittleness. Molded composite plates exhibit slightly lower stiffness and significantly lower strength than individual fibers.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/38419/1/750110103_ftp.pd

    Immuno-fluorescence staining patterns of leukocyte subsets in the skin of taurine and indicine cattle

    Get PDF
    The immuno-staining patterns of skin leukocytes were investigated in three breeds of cattle: Holstein-Friesian, Brahman and Santa Gertrudis of similar age before and after tick infestation. The antibodies specific for CD45 and CD45RO reacted with cells in the skin of all Holstein-Friesian cattle but did not react with cells in the skin of any Brahman cattle. The same antibodies reacted with cells from the skin of four (CD45) and seven (CD45RO) of twelve Santa Gertrudis cattle. The antibodies specific for T cells and γδ subset of T cells recognized cells from all three breeds of cattle. The antibody specific for MHC class II molecules labelled cells of mostly irregular shape, presumably dermal dendritic cells and/or macrophages and Langerhans cells. The antibody specific for granulocytes (mAb CH138) reacted with cells only in sections cut from skin with lesions. The antibody specific for CD25+ cells labelled regularly shaped cells that showed a wide range of intensities of staining
    • …
    corecore