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a b s t r a c t

Markov chains (MCs) are statistical models used in many applications to model wind speed. Their main
feature is the ability to represent both the statistical and temporal characteristics of the modelled wind
speed data. However, MCs are not able to capture wind characteristics at high frequencies, and, by de-
finition, in an MC the dependence on events far in the past is lost. This is reflected by a poor match of
autocorrelation function of recorded data and artificially generated time series. This study presents a new
method for generating artificial wind speed time series. This method is based on nested Markov chains
(NMCs), which are an extension of MC models, where each state in the state space can be seen as a self-
contained MC. The approach is designed to be flexible, so that the number and distribution of NMC states
can be adjusted according to user requirements for model accuracy and computational efficiency. The
model is tested on two datasets recorded in two UK locations, one onshore and one offshore. Results
indicate that NMCs are able to capture the temporal self-dependence of wind speed data better than
MCs, as shown by the better match of the autocorrelation functions of recorded and artificially generated
time series.

& 2016 Elsevier Ltd. All rights reserved.
1. Introduction

The efficient analysis and exploitation of wind energy resources
requires models for wind speed at different time scales. The aim of
these models is not to forecast the actual wind speed at a certain
time, but to generate artificial wind time series that can realisti-
cally represent a possible chain of events, i.e. series of wind speeds
with a pre-set resolution. Depending on the application, there are
some aspects of this “realism” that might be more important than
others. This is the case, for instance, of extreme events modelling
(Lennard, 2014), or investigation of daily patterns in wind energy
production (Scholz et al., 2014), or estimation of total annual en-
ergy outputs of wind farms (Hayes and Djokic, 2013b; Hayes et al.,
2011, 2012).

Different methods for wind speed modelling have been pro-
posed such as autoregressive moving average (ARMA) models
(Kennedy and Rogers, 2003) and Markov chain (MC) models (Jones
and Lorenz, 1986). More sophisticated and accurate methods,
which may for instance use the knowledge of other quantities
such as pressure and temperature, have been developed (e.g. Bit-
ner-Gregersen et al., 2014), but those methods are more
. Tagliaferri),
k (I.M. Viola),
computationally demanding and not suitable for applications
where a limited amount of data is available. Despite their simpli-
city, MCs are able to model the wind time dependence char-
acteristics because they are based on the idea that the probability
distribution for the wind at the next time step depends on the
current wind state. Other models, such as ARMA, are not able to
capture this probability dependence. Therefore, although the need
for forecasting has driven academic research to develop better
models, the simplicity of MCs makes them a valuable tool as
shown by their use in many recent studies. For example, when
wind influences a series of decisions that have to be based on
current observation, MCs are particularly suited for their property
of memory loss (Al-Sabban et al., 2013). Similarly, MCs have been
used to model wind turbines when focusing on component failure,
that has properties that are independent from the past history
(Sunder Selwyn and Kesavan, 2013), or in sailing strategy, where
decisions taken at one time step need to be based on the expected
wind behaviour at the following time step(s) (Tagliaferri et al.,
2014).

However, MCs are not able to capture wind characteristics at
high frequencies, but also, by definition, in an MC the dependence
on events far in the past is lost. This is reflected in a general good
agreement of statistical quantities such as mean and variance, but
in a poor modelling of autocorrelation function and power spectral
density. A recent study by Brokish and Kirtley (2009) underlines
the appeal of MCs for wind modelling in terms of correct
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representation of cumulative distribution function (CDF), but also
shows the unsuitability of the model for time steps smaller than
15 min using a convincing example of storage underestimation.

In order to improve the accuracy and the autocorrelation of
standard MCs, semi-Markov models have been used, where the
time step is not fixed, but it is a random variable that can have any
distribution, and the time spent in one state affects the transition
probability distribution (D'Amico et al., 2014). In D'Amico et al.
(2013), it is shown how semi-Markov processes with memory
exhibits a better autocorrelation agreement than conventional
MCs. This is due to the ability of this model to keep memory of
past transitions through an auxiliary random process representing
the moving average of the wind speed.

Some authors (e.g. Shamshad et al., 2005) have also applied
second or third order MCs, where time steps are again fixed, and
the probability distribution for the next state is dependent not just
on the current state, but also on the previous states. Unfortunately,
higher order MCs are more computationally demanding, as for
instance a third order 32-state MC requires 32,768 state transition
probabilities. Therefore, the key advantage of using MCs instead of
a more sophisticated method is lost.

In order to improve the MC accuracy and to better model the
time correlation at small time steps without an excessive increase
of the computational time, we propose the use of nested Markov
chains (NMCs) for wind modelling, which is previously considered
in the context of “smart grid” analysis in Hayes and Djokic (2013a).
With a similar approach to the one presented in D'Amico et al.
(2013), we define a model based on MC but with the additional
property of keeping a form of memory of past transitions.

The paper is organised as follows: in the Method, we present
the principles of MCs and NMCs, how these models are used to
forecast the wind speed, and the criteria used to evaluate the re-
sults. In the Results, we compare different artificial time series
generated with MCs and NMCs with original recorded data. Con-
cluding remarks are summarised in the Conclusions.
2. Method

2.1. Markov chains

In this section we define MCs and their basic properties. A
complete description of MC is out of the scope of this paper and
can be found for instance in Norris (1998).

Let …X X X, , ,0 1 2 be the stochastic process representing the
wind speed. The subscript represents a discrete time step (seconds
in this work) and the random variables Xi can assume values on a
discrete set = { … } s s, , N1 , which is called state space. In the
present study, the states …s s, ,1 2 are intervals of possible wind
speeds, and each interval is identified by its central point. The
states are classified in Table 1. With this notation, the wind speed
is represented as a time series, or a stochastic process, where, for
instance, the events “ =X s0 3” and “ =X s4 8” mean that the wind
speed at time 0 (or initial time) is in the interval s3 and that the
wind speed a time =t 4 s is in the interval s8 respectively. For
simplicity, when generating an output time series, we consider
just the central point of the interval defining the state. This means
that the event “the wind speed value is in the range [ ]a b, ” becomes
Table 1
State spaces.

State s1 s2 … s26 s27

Interval (m/s) 0–1 1–2 … 25–26 26–28
Output (m/s) 0.5 1.5 … 25.5 27
the event “the wind speed is ( + )b a /2”. The choice of having wider
intervals grouped in the same state for higher wind speeds is
justified by the infrequent occurrence of those wind speeds. This
results in a trade-off between the number of states and how ac-
curately the higher, more infrequent wind speeds are modelled.
However, the occurrences of infrequent wind speeds, and there-
fore the choice of interval widths, depends on the available dataset
(specifically on its length). The Markov property for the process
{ } ≥Xk k 0 asserts that the probability distribution at time n is de-
pendent on the state at time −n 1, but independent from what
happened before. This property is also referred to as memory loss,
and is formulated by the following equation:

{ = | = = … = } = { =

| = } = ( )

− −

−

−
 X s X s X s X s X s

X s p

, , ,

1

n j n i n i i n j

n i ij

1 2 0

1

n 2 0

where ∈ s s s, ,i j ik
. Fig. 1 shows a common way of representing

MC. The process “jumps” from one state to the next according to
the probabilities associated to the arrows. It is clear from the re-
presentation that the transition probabilities depend on the cur-
rent state, but not on the previous ones. The transition prob-
abilities are naturally represented in a transition matrix = { }P pij ,
where the elements of the matrix, pij, are the probabilities defined
in Eq. (1). The ith row of the matrix P represents the discrete
probability distribution for the next state when the current state is
i. The probability distribution for the initial state X0, or initial
distribution is conventionally represented as a column vector P0,
where the element p0i is defined in Eq. (2), or the initial state could
be arbitrarily selected to start the process (for instance, as the
mode or median value from the dataset):

= { = } ( )p X s 2i i
0

0

State space, transition matrix and initial distributions uniquely
define an MC process.

2.2. Nested Markov chains

In the NMC approach, the wind series is built using an auxiliary
MC. Let T and t be two different time steps, where T is a multiple of
t. For instance, throughout this paper t¼1 s. Let = …S s s, N1 be a
finite state space. We define …Y Y, ,0 1 the MC on the space state S,
representing the average wind speed over a period of length T
with transition matrix P. In the following, this process will be re-
ferred to as the outer MC. We generate a sequences of wind speed
time series of duration T with time step t using the transition
matrix PYi, where the element Pkij represents the probability that
the wind at instant n is in state sj given the event that at time −n 1
it was in state si when the average over the period T is sk. Those
models will be referred to as inner MC. The output process is the
sequence of realisations of the inner MC, i.e. one series if inner
states with step t for each state of the outer MC. Fig. 2 shows a
graphical representation of the relationship between inner and
outer MC.

The output process now does not strictly follow the Markov
property, because the probability distribution for time n does not
depend only on the state at time −n 1, but also on what happened
in the previous hour. However, if we consider the process within
one hour, this is an MC. Also the outer process is an MC. In fact, an
s28 s29 s30 s31 s32

28–31 31–34 34–39 39–43 43–54
29.5 32.5 36.5 41 48.5



Fig. 1. Representation of a Markov chain with three states S S S, ,1 2 3, with transition
probabilities pij.

Fig. 2. Representation of a nested Markov chain with three states, where the
probabilities pij are associated to the transitions of the outer chain.
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NMC can be seen as an extended MC, in which each state is a self-
contained stochastic MC sub-process.

In this study, the state space S is the one defined in Table 1 for
both the outer and all the inner processes. This is not the only
possible choice, and other options could involve two different state
spaces depending on what the outer process is modelling. For
instance, it could involve the characterisation of other weather
components, such as occurrence of rain and clouds, so that the
inner MCs correspond to different MCs for sunny/cloudy/rainy
days. The process can be generalised even more, using non-Mar-
kovian models for the generation of the inner time series. For in-
stance, the inner MC may be replaced with an AR mode, and the
model would become a Markov switching AR model (Ailliot and
Monbet, 2012; Pinson and Madsen, 2012).

2.3. Artificial time series

In this section we describe the process for computing the initial
distribution and the transition matrix that uniquely defines the
MC model starting from recorded data, and then how a new ar-
tificial time series can be generated from those transition matrices
via a Monte Carlo simulation. We first describe the procedure for a
generic MC.

The first step is to define the state space, shown in Section 2.1
(see Table 1).

The initial distribution corresponds to the empirical distribu-
tion function for the entire wind series. It is computed by dividing
the dataset into bins corresponding to the state space intervals,
and normalising the vector of the occurrences in every bin. For
instance, to compute = { = }p X s1

0
0 1 , which is the probability that

the first element of the wind time series is in the interval s1, we
count the number of times that there is a value belonging to the
interval s1 in the entire recorded time series and divide it by the
total number of recorded values.

The transition matrix is obtained in a similar way. The generic
element pij of the transition matrix is computed by counting how
many times a value in the interval si is followed by one in the
interval sj in the recorded wind speed time series, normalised over
the number of occurrences of values in bin si. Formally, this means
using a maximum likelihood estimator for the transition prob-
abilities. Once the probability distributions have been computed, it
is possible to generate wind speed time series of arbitrary length
through a Monte Carlo simulation. This can be achieved by using a
conventional random number generator. We generate a series of
independent identically distributed random variables …z z z, , ,0 1 2

uniform on the interval [ ]0, 1 . Let = [ … ]P p p, , N0 1
0 0 be the probability

vector representing the initial distribution. The initial state X0 is
defined as =X si0 if

∑

∑

<

> ( )

=

=

+

⎧
⎨⎪

⎩⎪
p z

p z 3

k

i

k

k

i

k

0
0

0

0

1 0
0

Similarly, for the subsequent time steps, the value for the general
Xt, given the previous state =−X st i1 is defined to be Xt¼sj if

∑

∑

<

> ( )

=

=

+

⎧
⎨⎪

⎩⎪
p z

p z 4

k

j

ik i

k

j

ik i

0

0

1

The described procedure, which can be used to generate an arti-
ficial time series based on an MC model, can be extended to NMC
as follows. The initial distribution is computed as described in Eq.
(3). The dataset is processed to generate an auxiliary dataset
constituted by hourly average values. This auxiliary dataset is used
to compute the transition matrix for the outer process. The ori-
ginal dataset is also subdivided in N smaller datasets, where se-
quences of 3600 values belong to the ith set if their average
corresponds to the state si. Each of these dataset is used to gen-
erate a transition matrix Psi . For generating the NMC-based time
series, the outer MC time series is generated first, by using the
procedure described above for conventional MC models. Then, for
each outer state, another MC of exactly 3600 time steps is gener-
ated. In this case, attention should be paid to the initial state of
each of those MCs. In fact, the last state of the previous MC is used
as initial state for the following one.

The value for the general Xt, given the previous state =−X st i1
and given the outer state Yl¼sl is defined to be Xt¼sj if

∑

∑

<

> ( )

=

=

+

⎧
⎨⎪

⎩⎪
p z

p z 5

k

j

ik
l

i

k

j

ik
l

i

0

0

1

The choice of the state space is highly dependent on the applica-
tion. The space used for a 32-states MC in this study is again the
one defined in Table 1. In order to investigate the sensitivity of
model accuracy and computational requirements on the number



Fig. 3. 1,000,000-s example of recorded data.

Table 2
Statistics for the different T.

T (s) Mean (m/s) Standard deviation R2

1 8.30 4.71 0.843
10 8.95 4.32 0.912
1000 9.74 3.28 0.989
3600 9.71 3.21 0.991
10,000 9.16 3.45 0.993
100,000 8.15 4.21 0.821
1,000,000 7.12 3.23 0.854
Recorded 9.45 4.88 –

Table 3
Statistics for the recorded 150-day dataset and for the different models tested.

Model Mean (m/s) Standard deviation R2

Recorded 9.45 4.88 –

NMC-32 9.71 3.21 0.991
MC-32 8.30 4.71 0.843
ARMA 6.91 2.92 0.754

Fig. 4. Example of 1,000,000-s time series generated using an ARMA(8,8) model.
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of states, we model also MCs with just 16 and 8 states. The states
for those other models are defined by merging close states. The
optimal number of states depends on the application and on the
amount of available data.

It is also important to note that the outer state does not strictly
represent the wind speed average over one hour. In fact, for each
hour a certain average (corresponding to a state si) is assumed.
This value si identifies a transition matrix which is then used to
generated 3600 values. As this is a finite number of states, the
actual average of the 3600 values generated may be, and typically
is, different from si. The outer state can rather be interpreted as an
expected average. In fact, due to convergence laws for MC (Norris,
1998), if the inner process had an infinite number of points, its
average would converge to the expected average.

2.4. Model evaluation

The proposed method is first evaluated by testing it on a re-
corded onshore dataset, which is a high-resolution wind speed
dataset recorded at a site located on the west coast of Scotland
(Anderson, 2006). Wind speed at 1 Hz resolution was measured
over a period of around 150 days. Fig. 3 shows an example of re-
corded data. An additional dataset recorded at an offshore site is
discussed in Section 3.

The performance of the proposed NMC with different number
of states (8, 16 and 32) is compared with a standard MC model
with 32 states. In order to provide a comparison with a standard
procedure in time series analysis, the results achieved with an
autoregressive moving average model (ARMA) are also presented.

An ARMA process of parameters p and q is defined by the fol-
lowing equation:

∑ ∑= + ϵ +
( )=

−
=

−X a X b c
6

t
i

p

i t i
i

q

i t i
1 0

where ai, bi and c are the parameters defining the model, and ϵi are
white noise error terms (Bendat and Piersol, 2011).

For each of these methods we compute mean, variance, coef-
ficient of determination R2 and autocorrelation. Given a time series

…X X X, , , M0 1 , the autocorrelation rk is defined in the following
equation:

( )
=

∑ ( − ¯ )( − ¯ )

∑ − ¯ ( )

=
−

+

=

r
y y y y

y y 7
k

m
M k

m m k

m
M

m

1

1

2

where M is the total number of data points in the time series, ym
the series value at time point m, k is the number of lags, and ȳ is
the overall average wind speed value.

The best values for p and q are chosen by using the Bayesian
information criterion (BIC). This is based on an exhaustive search,
simulating different ARMA models with different values for p and
q. For each model, the loglikelihood objective function is com-
puted. This function is then used to compute the BIC measure of
fit. Further details on ARMA processes and BIC can be found, for
instance, in Stoica and Selen (2004).
3. Results

In this section we present and analyse different artificial time
series, compared with original recorded data. The artificial time
series are generated using

1. A 32-states NMC.
2. A 32-state MC.
3. An autoregressive moving average model, ARMA(p,q) with the

optimal values p¼8, q¼8.

The first investigation is carried out to identify the optimal T, re-
presenting the permanence time in an outer state. Different 32-
states NMC models are tested and the results are summarised in
Table 2. The best fit is obtained for values of T between 1000 and
10 000 s.

The NMC in the following are based on T¼3600 s, i.e. the outer
process is based on hourly averages. In fact, 3600 s lies in the
optimal range which yields the highest correlation values. The
statistical properties of the original dataset and the artificial time



Fig. 5. Example of 1,000,000-s time series generated using an MC model with 32
states.

Fig. 6. Example of 1,000,000-s time series generated using an NMC model with 32
states.

Fig. 7. Autocorrelation plots for recorded data and for MC and NMCmodels with 32
states.

Fig. 8. Autocorrelation plots for recorded data, 32-state MC and three different
NMC models.

Table 4
Comparison of computational times.

Model 1 hour output (s) 1 year output

MC-32 0.13 30 min, 39 s
NMC-8 0.18 26 min, 16 s
NMC-16 0.44 1 h, 4 min, 21 s
NMC-32 0.95 2 h, 18 min, 48 s
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series are summarised in Table 3. The ARMA model is the one that
differs the most from the original data and this is reflected by all
the statistical indices. Although the MC model has a standard
deviation that is closer to the one of the recorded data, the match
of the CDF, represented in the value R2, is improved by the use of
the NMC. In general, all the R2 values are high, but a close match of
the CDF is, however, expected from the construction of the model
and the use of the maximum likelihood estimator.

Fig. 4 shows a 1,000,000-s (278-h) example of a time series
generated using the ARMA model. Using the BIC, the best p and q
were found to be 8 and 8, respectively. A qualitative comparison
with the recorded data shows higher fluctuations in the wind
speed values, although there is a slightly higher number of values
around the mean. The low R2 value reflects this problem.
Fig. 5 shows a 1,000,000-s example of a time series generated

using the 32-states MC model, while Fig. 6 shows a 1,000,000-s
example of time series generated using the 32-states NMC. The
two time series are qualitatively very different, although the sta-
tistics presented in Table 3 have close values. In particular, a value
that can be misleading is the standard deviation. The standard
deviation values are very similar because they are computed over
the long output time series (150 days), and their similarity is again
a consequence of the closeness of CDF. When computed over
smaller intervals, the variance for the NMC model is, on average,
closer to the one of the original data than the one for MC. In fact
the occurrences of different values along the whole time series are
similar. However, when using NMC, similar values are “clustered”
together around a fixed hourly average.

The quantitative improvement of the proposed NMC over MC
in terms of autocorrelation is shown in Fig. 7. The NMC model
allows us to preserve the autocorrelation significantly longer than
the MC model, which deviates from the original data after ap-
proximately 100 time steps. Fig. 8 shows the autocorrelation for
NMC models with 8, 16 and 32 states in comparison with a 32-
state MC model, focusing on the differences over the first lags. The
results show that when more states are used for the NMC model,
the autocorrelation improves. However the biggest gain is ob-
tained when going from 8 to 16 states, while going from 16 to 32
states brings a marginal improvement. Even with just 8 states, an
NMC-based model allows a significant improvement in the auto-
correlation modelling with respect to a conventional MC model.

The increased similarity of the autocorrelation function to the
one of the original data means that, overall, the NMC model can be
used to generate more realistic wind speed time series when
compared to a conventional MC model. This becomes particularly
important when the artificially generated series are used as input
for computations in certain applications. In fact, if the computa-
tions depend not only on the current state, but also on the pre-
vious states, then it is important that not only the single values are
realistic (as captured, for instance, by the PDF), but also that the
relationship between consecutive value is respected, and this is
exactly what is captured by the autocorrelation function. This is
crucial, for instance, in presence of hysteresis. An example is the
pitch control of the turbines' blade, where there could be



Fig. 9. Empirical probability density function for recorded data and for MC and
NMC models with 32 states.

Table 5
Statistics for the verification dataset and for the different models tested.

Model Mean (m/s) Standard deviation R2

Recorded 10.12 5.15 –

NMC-32 10.06 4.73 0.991
MC-32 10.54 4.71 0.913
ARMA 9.78 4.38 0.824
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hysteresis in the case of dynamic stall (Taylor et al., 2015). Other
cases include control energy storage systems, where the optimal
operation depend not only on the energy currently produced, but
also on the previously produced energy (Setas Lopes et al., 2016).
Applications beyond the wind energy field include decision-mak-
ing in competitive sailing, where the optimal decisions should be
taken according to the wind observed over a certain time window
rather than a single time-step. The improvement in NMC could
allow routing algorithms, such as the one presented by Tagliaferri
et al. (2014), to include multi-step computations.

In order to quantify the trade-off between accuracy of the
model and complexity, Table 4 shows the computational times
required by the model to generate: (i) one hour of 1 Hz wind speed
output ( × =60 60 3600 data points) and (ii) one year of 1 Hz wind
speeds ( × × × =365 24 60 60 31, 536, 000 data points). All ana-
lyses was carried out in Matlab using a 2.27 GHz Intel micro-
processor. The computation times are a function of the number of
allowable state transitions in the model, i.e. reducing the number
of NMC states results in shorter computation times.

The choice of the optimal number of states generally depends
on a number of factors related to the target application. For in-
stance, some studies such as the one focussing on the comparison
of two energy storage options in Hayes et al. (2016), require long
time histories (in that case 40 years) with short time steps. As-
suming the same computational power as the one used for this
study, and the same time step of 1 Hz (although the study cited
uses a longer time step) generating this time history would require
almost four days of computation using the NMC-32, and less than
one day using NMC-8. However, this type of analysis is usually
carried out at a planning stage (i.e. off-line), as part of the longer-
duration feasibility studies and design processes, which involve a
number of options, parameters and factors, but are not time-cri-
tical. Accordingly, the additional computation time required for
increasing the quality of the generated dataset will not necessarily
have an impact on the overall time needed for the study. In other
cases however, for instance when using probabilistic models for
forecasting wind speed (Carpinone et al., 2015), the computations
need to be carried out in real-time, but these applications usually
require shorter time series. Considering a one-hour time series,
the difference between using NMC-8 and NMC-32 is in most cases
negligible. Nevertheless, if the available computational resources
are limited, or if the processing requirements for the application
are high, a lower number of states could still be chosen for some
real-time implementations, for instance in sailing applications as
described in Tagliaferri et al. (2014).

Fig. 9 shows a comparison of the empirical probability density
functions of the original data with the empirical PDFs of the MC and
NMC model. Both models are in good agreement with the data, as
in both cases the parameters were calculated using maximum
likelihood estimators. However, and crucially for the presented
analysis, the MC model leads to the higher probability values for
low-probability events (the right tail of the curve), which means a
much higher occurrence and therefore less realistic representation
of extreme values. In fact, as shown in Dobakhshari and Fotuhi-
Firuzabad (2009), when studying wind energy applications it is
important in wind energy to take into account the so-called “cut-in”
and “cut-out” wind speeds. These two values represent the
boundaries of the range of wind speed at which energy is produced
by wind turbines: if the wind speed is either lower than the cut-in
speed, or higher than the cut-out speed, the output power of a wind
turbine is zero. Therefore, for reliable analysis, it is important that
the model used for generating wind speed time series assigns
adequate probability to wind speeds outside this range.

In order to further demonstrate application of the presented
NMC methodology, the calculations carried out for the onshore
dataset are repeated by using an additional dataset from an off-
shore site (Noordzee Wind, 2013). Table 5 shows a further com-
parison between the different models, using this alternative da-
taset. The results are in agreement with those presented for the
onshore dataset and improvement in autocorrelation function is
also confirmed. However, for this particular case the optimal
ARMA model was found to be for p¼7, q¼6.
4. Conclusions

Markov chains constitute a useful and easy tool for generating
synthetic artificial wind speed time series with a low computa-
tional cost. Compared to other common models, they are easy to
implement, have low computational requirements and are able to
represent correctly the first order statistics of recorded data.
However, due to their “loss of memory”, these models are not able
to capture the time dependency on past values, and this is typi-
cally shown in a poor agreement of the autocorrelation function.

In this study, we have proposed for the first time the use of
nested Markov chains to model wind speed. In a conventional MC
model, the probability distribution for each value depends only on
the previous one. In an NMC-based model, it depends also on the
hourly average and on the wind speed in the past hour, taking into
account lower frequencies of the time series. We tested the model
by generating one-second-step wind speed time series with MC
and NMC approach for one onshore and one offshore site, where
the NMC takes into account the hourly averages of the wind speed.
We show that with NMC it is possible to get a significant im-
provement in the autocorrelation function for the artificially gen-
erated time series. This means that NMC can better model the
temporal self-dependence of analysed time series than a conven-
tional MC.
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