14 research outputs found

    Stabilization of lipoxygenase-1 from glycine max by microencapsulation

    No full text
    Lipoxygenase from soybean was encapsulated and the effect of different carrier materials (whey protein, gum arabic, whey protein along with sodium alginate and maltodextrin) on enzyme stability during spray drying was studied and compared with freeze drying. The addition of polyethylene glycol (PEG-4000) during spray drying evidently enhanced enzyme stability. Total activity of lipoxygenase after spray drying was 1.14 × 10<sup>4</sup>(whey protein isolate), 1.2 × 10<sup>4</sup>(gum arabic), 1.09 × 10<sup>4</sup>(whey protein isolate + sodium alginate), 1.44 × 10<sup>4</sup>(maltodextrin), and 1.55 × 10<sup>4</sup>(PEG + maltodextrin). Highest enzyme activity recovery of 72.02% was achieved with the combined addition of maltodextrin and PEG-4000. Moisture, scanning electron microscopy analysis, and storage studies were carried out for spray- and freeze-dried enzyme

    Development of a lemon cutting machine

    No full text
    Cutting of lemon and other similar fruits is conventionally done manually by sharp knife, which is labor intensive and often un-hygienic. In the present work, a device has been designed and developed for cutting of lemon hygienically into four pieces of similar shape based on stationery cutters and rotating centralizing/locating slit plate concept. Machine has a unique knife assembly consisting of two bird wing shaped knives, joined by welding perpendicularly to a vertical knife, so that the lemon can be cut into four pieces in a single sweep. Six numbers of rotating centralizing/locating slit plates are welded on to the side plates and the plates carry a groove on its inner face, to enable the wing shaped knife to complete the horizontal cut. The rotating slit plates, having centralizing angle of 90°, are rotated by an electric geared motor. The prototype machine has capacity of over 5,000 lemons/h with a power consumption of 0.11 kW

    Encapsulation of yeast (Saccharomyces cereviciae) by spray drying for extension of shelf life

    No full text
    The objective of the present work was to encapsulate yeast using different carrier materials and examine their efficacy in retaining viability of cells after spray drying. Slurry containing yeast cells along with known amount of carrier material (maltodextrin, corn starch, gum arabic, acacia gum, polyethylene glycol 8000, &#946;-cyclodextrin, and skimmed milk powder, one at a time) was added and served as feed. Among these carrier materials attempted, corn starch and maltodextrin showed the best results with respect to powder yield (59%, w/w) and cell survival (80.5%), respectively. However, considering both survival and powder yield (67 and 59% w/w, respectively), corn starch was observed to be the most suitable carrier material
    corecore