36 research outputs found

    Impact of HIV-1 viral subtype on disease progression and response to antiretroviral therapy

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Our intention was to compare the rate of immunological progression prior to antiretroviral therapy (ART) and the virological response to ART in patients infected with subtype B and four non-B HIV-1 subtypes (A, C, D and the circulating recombinant form, CRF02-AG) in an ethnically diverse population of HIV-1-infected patients in south London.</p> <p>Methods</p> <p>A random sample of 861 HIV-1-infected patients attending HIV clinics at King's and St Thomas' hospitals' were subtyped using an in-house enzyme-linked immunoassay and <it>env </it>sequencing. Subtypes were compared on the rate of CD4 cell decline using a multi-level random effects model. Virological response to ART was compared using the time to virological suppression (< 400 copies/ml) and rate of virological rebound (> 400 copies/ml) following initial suppression.</p> <p>Results</p> <p>Complete subtype and epidemiological data were available for 679 patients, of whom 357 (52.6%) were white and 230 (33.9%) were black African. Subtype B (n = 394) accounted for the majority of infections, followed by subtypes C (n = 125), A (n = 84), D (n = 51) and CRF02-AG (n = 25). There were no significant differences in rate of CD4 cell decline, initial response to highly active antiretroviral therapy and subsequent rate of virological rebound for subtypes B, A, C and CRF02-AG. However, a statistically significant four-fold faster rate of CD4 decline (after adjustment for gender, ethnicity and baseline CD4 count) was observed for subtype D. In addition, subtype D infections showed a higher rate of virological rebound at six months (70%) compared with subtypes B (45%, p = 0.02), A (35%, p = 0.004) and C (34%, p = 0.01)</p> <p>Conclusions</p> <p>This is the first study from an industrialized country to show a faster CD4 cell decline and higher rate of subsequent virological failure with subtype D infection. Further studies are needed to identify the molecular mechanisms responsible for the greater virulence of subtype D.</p

    A Standards Organization for Open and FAIR Neuroscience: the International Neuroinformatics Coordinating Facility

    Get PDF
    There is great need for coordination around standards and best practices in neuroscience to support efforts to make neuroscience a data-centric discipline. Major brain initiatives launched around the world are poised to generate huge stores of neuroscience data. At the same time, neuroscience, like many domains in biomedicine, is confronting the issues of transparency, rigor, and reproducibility. Widely used, validated standards and best practices are key to addressing the challenges in both big and small data science, as they are essential for integrating diverse data and for developing a robust, effective, and sustainable infrastructure to support open and reproducible neuroscience. However, developing community standards and gaining their adoption is difficult. The current landscape is characterized both by a lack of robust, validated standards and a plethora of overlapping, underdeveloped, untested and underutilized standards and best practices. The International Neuroinformatics Coordinating Facility (INCF), an independent organization dedicated to promoting data sharing through the coordination of infrastructure and standards, has recently implemented a formal procedure for evaluating and endorsing community standards and best practices in support of the FAIR principles. By formally serving as a standards organization dedicated to open and FAIR neuroscience, INCF helps evaluate, promulgate, and coordinate standards and best practices across neuroscience. Here, we provide an overview of the process and discuss how neuroscience can benefit from having a dedicated standards body

    The HIV-1 Subtype C Epidemic in South America Is Linked to the United Kingdom

    Get PDF
    Background: The global spread of HIV-1 has been accompanied by the emergence of genetically distinct viral strains. Over the past two decades subtype C viruses, which predominate in Southern and Eastern Africa, have spread rapidly throughout parts of South America. Phylogenetic studies indicate that subtype C viruses were introduced to South America through a single founder event that occurred in Southern Brazil. However, the external route via which subtype C viruses spread to the South American continent has remained unclear.Methodology/Principal Findings: We used automated genotyping to screen 8,309 HIV-1 subtype C pol gene sequences sampled within the UK for isolates genetically linked to the subtype C epidemic in South America. Maximum likelihood and Bayesian approaches were used to explore the phylogenetic relationships between 54 sequences identified in this screen, and a set of globally sampled subtype C reference sequences. Phylogenetic trees disclosed a robustly supported relationship between sequences from Brazil, the UK and East Africa. A monophyletic cluster comprised exclusively of sequences from the UK and Brazil was identified and dated to approximately the early 1980s using a Bayesian coalescent-based method. A sub-cluster of 27 sequences isolated from homosexual men of UK origin was also identified and dated to the early 1990s.Conclusions: Phylogenetic, demographic and temporal data support the conclusion that the UK was a crucial staging post in the spread of subtype C from East Africa to South America. This unexpected finding demonstrates the role of diffuse international networks in the global spread of HIV-1 infection, and the utility of globally sampled viral sequence data in revealing these networks. Additionally, we show that subtype C viruses are spreading within the UK amongst men who have sex with men

    Worldwide molecular epidemiology of HIV

    Full text link
    corecore