17 research outputs found

    Endothelial-specific Nox2 overexpression increases vascular superoxide and macrophage recruitment in ApoE−/− mice

    Get PDF
    AIMS: Vascular disease states are associated with endothelial dysfunction and increased production of reactive oxygen species derived from NADPH oxidases. However, it remains unclear whether a primary increase in superoxide production specifically in the endothelium alters the initiation or progression of atherosclerosis. METHODS AND RESULTS: Mice overexpressing Nox2 specifically in the endothelium (Nox2-Tg) were crossed with ApoE(-/-) mice to produce Nox2-Tg ApoE(-/-) mice and ApoE(-/-) littermates. Endothelial overexpression of Nox2 in ApoE(-/-) mice did not alter blood pressure, but significantly increased vascular superoxide production compared with ApoE(-/-) littermates, measured using both lucigenin chemiluminescence and 2-hydroxyethidium production (ApoE(-/-), 19.9 ± 6.3 vs. Nox2-Tg ApoE(-/-), 47.0 ± 7.0 nmol 2-hydroxyethidium/aorta, P< 0.05). Increased endothelial superoxide production increased endothelial levels of vascular cell adhesion protein 1 and enhanced macrophage recruitment in early lesions in the aortic roots of 9-week-old mice, indicating increased atherosclerotic plaque initiation. However, endothelial-specific Nox2 overexpression did not alter native or angiotensin II-driven atherosclerosis in either the aortic root or the descending aorta. CONCLUSION: Endothelial-targeted Nox2 overexpression in ApoE(-/-) mice is sufficient to increase vascular superoxide production and increase macrophage recruitment possible via activation of endothelial cells. However, this initial increase in macrophage recruitment did not alter the progression of atherosclerosis. These results indicate that Nox-mediated reactive oxygen species signalling has important cell-specific and distinct temporal roles in the initiation and progression of atherosclerosis

    Human leukocyte antigen alleles associate with COVID-19 vaccine immunogenicity and risk of breakthrough infection.

    Get PDF
    Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccine immunogenicity varies between individuals, and immune responses correlate with vaccine efficacy. Using data from 1,076 participants enrolled in ChAdOx1 nCov-19 vaccine efficacy trials in the United Kingdom, we found that inter-individual variation in normalized antibody responses against SARS-CoV-2 spike and its receptor-binding domain (RBD) at 28 days after first vaccination shows genome-wide significant association with major histocompatibility complex (MHC) class II alleles. The most statistically significant association with higher levels of anti-RBD antibody was HLA-DQB1*06 (P = 3.2 × 10-9), which we replicated in 1,677 additional vaccinees. Individuals carrying HLA-DQB1*06 alleles were less likely to experience PCR-confirmed breakthrough infection during the ancestral SARS-CoV-2 virus and subsequent Alpha variant waves compared to non-carriers (hazard ratio = 0.63, 0.42-0.93, P = 0.02). We identified a distinct spike-derived peptide that is predicted to bind differentially to HLA-DQB1*06 compared to other similar alleles, and we found evidence of increased spike-specific memory B cell responses in HLA-DQB1*06 carriers at 84 days after first vaccination. Our results demonstrate association of HLA type with Coronavirus Disease 2019 (COVID-19) vaccine antibody response and risk of breakthrough infection, with implications for future vaccine design and implementation

    Effect of angiotensin-converting enzyme inhibitor and angiotensin receptor blocker initiation on organ support-free days in patients hospitalized with COVID-19

    Get PDF
    IMPORTANCE Overactivation of the renin-angiotensin system (RAS) may contribute to poor clinical outcomes in patients with COVID-19. Objective To determine whether angiotensin-converting enzyme (ACE) inhibitor or angiotensin receptor blocker (ARB) initiation improves outcomes in patients hospitalized for COVID-19. DESIGN, SETTING, AND PARTICIPANTS In an ongoing, adaptive platform randomized clinical trial, 721 critically ill and 58 non–critically ill hospitalized adults were randomized to receive an RAS inhibitor or control between March 16, 2021, and February 25, 2022, at 69 sites in 7 countries (final follow-up on June 1, 2022). INTERVENTIONS Patients were randomized to receive open-label initiation of an ACE inhibitor (n = 257), ARB (n = 248), ARB in combination with DMX-200 (a chemokine receptor-2 inhibitor; n = 10), or no RAS inhibitor (control; n = 264) for up to 10 days. MAIN OUTCOMES AND MEASURES The primary outcome was organ support–free days, a composite of hospital survival and days alive without cardiovascular or respiratory organ support through 21 days. The primary analysis was a bayesian cumulative logistic model. Odds ratios (ORs) greater than 1 represent improved outcomes. RESULTS On February 25, 2022, enrollment was discontinued due to safety concerns. Among 679 critically ill patients with available primary outcome data, the median age was 56 years and 239 participants (35.2%) were women. Median (IQR) organ support–free days among critically ill patients was 10 (–1 to 16) in the ACE inhibitor group (n = 231), 8 (–1 to 17) in the ARB group (n = 217), and 12 (0 to 17) in the control group (n = 231) (median adjusted odds ratios of 0.77 [95% bayesian credible interval, 0.58-1.06] for improvement for ACE inhibitor and 0.76 [95% credible interval, 0.56-1.05] for ARB compared with control). The posterior probabilities that ACE inhibitors and ARBs worsened organ support–free days compared with control were 94.9% and 95.4%, respectively. Hospital survival occurred in 166 of 231 critically ill participants (71.9%) in the ACE inhibitor group, 152 of 217 (70.0%) in the ARB group, and 182 of 231 (78.8%) in the control group (posterior probabilities that ACE inhibitor and ARB worsened hospital survival compared with control were 95.3% and 98.1%, respectively). CONCLUSIONS AND RELEVANCE In this trial, among critically ill adults with COVID-19, initiation of an ACE inhibitor or ARB did not improve, and likely worsened, clinical outcomes. TRIAL REGISTRATION ClinicalTrials.gov Identifier: NCT0273570

    Identifying key regulators of tetrahydrobiopterin synthesis

    No full text
    EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    Pigeons may not remember the stimuli that reinforced their recent behavior.

    No full text
    In two experiments the conditioned reinforcing and delayed discriminative stimulus functions of stimuli that signal delays to reinforcement were studied. Pigeons' pecks to a center key produced delayed-matching-to-sample trials according to a variable-interval 60-s (or 30-s in 1 pigeon) schedule (Experiment 1) or a multiple variable-interval 20-s variable-interval 120-s schedule (Experiment 2). The trials consisted of a 2-s illumination of one of two sample key colors followed by delays ranging across phases from 0.1 to 27.0 s followed in turn by the presentation of matching and nonmatching comparison stimuli on the side keys. Pecks to the key color that matched the sample were reinforced with 4-s access to grain. Under some conditions of Experiment 1, pecks to nonmatching comparison stimuli produced a 4-s blackout and the start of the next interval. Under other conditions of Experiment 1 and each condition of Experiment 2, pecks to nonmatching stimuli had no effect and trials ended only when pigeons pecked the other, matching stimulus and received food. The functions relating pretrial response rates to delays differed markedly from those relating matching-to-sample accuracy to delays. Specifically, response rates remained relatively high until the longest delays (15.0 to 27.0 s) were arranged, at which point they fell to low levels. Matching accuracy was high at short delays, but fell to chance at delays between 3.0 and 9.0 s. In Experiment 2, both matching accuracy and response rates remained high over a wider range of delays in the variable-interval 120-s component relative to the variable-interval 20-s component. The difference in matching accuracy between the components was not due to an increased tendency in the variable-interval 20-s component toward proactive interference following short intervals. Thus, under these experimental conditions the conditioned reinforcing and the delayed discriminative functions of the sample stimulus depended on the same variables (delay and variable-interval value), but were nevertheless dissociated

    GTP Cyclohydrolase I Expression, Protein, and Activity Determine Intracellular Tetrahydrobiopterin Levels, Independent of GTP Cyclohydrolase Feedback Regulatory Protein Expression

    No full text
    GTP cyclohydrolase I (GTPCH) is a key enzyme in the synthesis of tetrahydrobiopterin (BH4), a required cofactor for nitricoxide synthases and aromatic amino acid hydroxylases. Alterations of GTPCH activity and BH4 availability play an important role in human disease. GTPCH expression is regulated by inflammatory stimuli, in association with reduced expression of GTP cyclohydrolase feedback regulatory protein (GFRP). However, the relative importance of GTPCH expression versus GTPCH activity and the role of GFRP in relation to BH4 bioavailability remain uncertain. We investigated these relationships in a cell line with tet-regulated GTPCH expression and in the hph-1 mouse model of GTPCH deficiency. Doxycycline exposure resulted in a dose-dependent decrease in GTPCH protein and activity, with a strong correlation between GTPCH expression and BH4 levels (r2 = 0.85, p < 0.0001). These changes in GTPCH and BH4 had no effect on GFRP expression or protein levels. GFRP overexpression and knockdown in tet-GCH cells did not alter GTPCH activity or BH4 levels, and GTPCH-specific knockdown in sEnd.1 endothelial cells had no effect on GFRP protein. In mouse liver we observed a graded reduction of GTPCH expression, protein, and activity, from wild type, heterozygote, to homozygote littermates, with a striking linear correlation between GTPCH expression and BH4 levels (r2 = 0.82, p < 0.0001). Neither GFRP expression nor protein differed between wild type, heterozygote, nor homozygote mice, despite the substantial differences in BH4. We suggest that GTPCH expression is the primary regulator of BH4 levels, and changes in GTPCH or BH4 are not necessarily accompanied by changes in GFRP expression

    Critical Role for Tetrahydrobiopterin Recycling by Dihydrofolate Reductase in Regulation of Endothelial Nitric-oxide Synthase Coupling: RELATIVE IMPORTANCE OF THE DE NOVO BIOPTERIN SYNTHESIS VERSUS SALVAGE PATHWAYS*

    No full text
    Tetrahyrobiopterin (BH4) is a required cofactor for the synthesis of nitric oxide by endothelial nitric-oxide synthase (eNOS), and BH4 bioavailability within the endothelium is a critical factor in regulating the balance between NO and superoxide production by eNOS (eNOS coupling). BH4 levels are determined by the activity of GTP cyclohydrolase I (GTPCH), the rate-limiting enzyme in de novo BH4 biosynthesis. However, BH4 levels may also be influenced by oxidation, forming 7,8-dihydrobiopterin (BH2), which promotes eNOS uncoupling. Conversely, dihydrofolate reductase (DHFR) can regenerate BH4 from BH2, but the functional importance of DHFR in maintaining eNOS coupling remains unclear. We investigated the role of DHFR in regulating BH4 versus BH2 levels in endothelial cells and in cell lines expressing eNOS combined with tet-regulated GTPCH expression in order to compare the effects of low or high levels of de novo BH4 biosynthesis. Pharmacological inhibition of DHFR activity by methotrexate or genetic knockdown of DHFR protein by RNA interference reduced intracellular BH4 and increased BH2 levels resulting in enzymatic uncoupling of eNOS, as indicated by increased eNOS-dependent superoxide but reduced NO production. In contrast to the decreased BH4:BH2 ratio induced by DHFR knockdown, GTPCH knockdown greatly reduced total biopterin levels but with no change in BH4:BH2 ratio. In cells expressing eNOS with low biopterin levels, DHFR inhibition or knockdown further diminished the BH4:BH2 ratio and exacerbated eNOS uncoupling. Taken together, these data reveal a key role for DHFR in eNOS coupling by maintaining the BH4:BH2 ratio, particularly in conditions of low total biopterin availability

    The effects of morphine on fixed-interval patterning and temporal discrimination.

    No full text
    Changes produced by drugs in response patterns under fixed-interval schedules of reinforcement have been interpreted to result from changes in temporal discrimination. To examine this possibility, this experiment determined the effects of morphine on the response patterning of 4 pigeons during a fixed-interval 1-min schedule of food delivery with interpolated temporal discrimination trials. Twenty of the 50 total intervals were interrupted by choice trials. Pecks to one key color produced food if the interval was interrupted after a short time (after 2 or 4.64 s). Pecks to another key color produced food if the interval was interrupted after a long time (after 24.99 or 58 s). Morphine (1.0 to 10.0 mg/kg) decreased the index of curvature (a measure of response patterning) during fixed intervals and accuracy during temporal discrimination trials. Accuracy was equally disrupted following short and long sample durations. Although morphine disrupted temporal discrimination in the context of a fixed-interval schedule, these effects are inconsistent with interpretations of the disruption of response patterning as a selective overestimation of elapsed time. The effects of morphine may be related to the effects of more conventional external stimuli on response patterning

    Cocaine's effects on food-reinforced pecking in pigeons depend on food-deprivation level.

    No full text
    Four pigeons deprived to 80% of their laboratory free-feeding weights pecked keys under a multiple fixed-ratio 30 fixed-interval 5-min schedule of food presentation. Components alternated strictly with 15-s timeouts separating them; each was presented six times. When rates of pecking were stable, 2 pigeons' weights were reduced to 70%, and the other 2 pigeons' weights were increased to 82.5% to 85% of free-feeding levels. Cocaine (1.0, 3.0, 5.6, and 10.0 mg/kg and saline) was administered 5 min prior to sessions. When each dose had been tested twice, pigeons' weights were adjusted to the level that they had not yet experienced, and cocaine was tested again. Cocaine reduced response rates in a dose-dependent manner under the fixed-ratio schedule and under the fixed-interval schedule at high doses, and increased rates under the fixed-interval schedule at low low doses. Reductions in pecking rates occurred at lower doses under both schedules in 3 of 4 pigeons when they were less food deprived compared to when they were more food deprived. Low doses of cocaine increased low baseline rates of pecking in the initial portions of the fixed-interval schedules by a greater magnitude when pigeons were more food deprived. Thus, food-deprivation levels altered both the rate-decreasing and rate-increasing effects of cocaine. The implications of these results for the mechanisms by which food deprivation increases cocaine self-administration and for the dependence of cocaine's effects on the baseline strength of operant behavior are discussed
    corecore