80 research outputs found

    Dark Matter Halo Mergers I: Dependence on Environment & Redshift Evolution

    Get PDF
    This paper presents a study of the specific merger rate as a function of group membership, local environment, and redshift in a very large, 500h1Mpc500h^{-1} Mpc, cosmological N-body simulation, the \textit{Millennium Simulation}. The goal is to provide environmental diagnostics of major merger populations in order to test simulations against observations and provide further constraints on major merger driven galaxy evolution scenarios. A halo sample is defined using the maximum circular velocity, which is both well defined for subhalos and closely correlated with galaxy luminosity. Subhalos, including the precursors of major mergers, are severely tidally stripped. Major mergers between subhalos are therefore extremely rare. Tidal stripping also suppresses dynamical friction, resulting in long major merger time scales when the more massive halo does not host other subhalos. In contrast, when other subhalos are present major merger time scales are several times shorter. This enhancement is likely due to inelastic unbound collisions between subhalos. Following these results, we predict that major mergers in group environments are dominated by mergers involving the central galaxy, that the specific merger rate is suppressed in groups, and that the frequency of fainter companions is enhanced for mergers and their remnants. We also observe an `assembly bias' in the major merger rate in that mergers of galaxy-like halos are slightly suppressed in overdense environments while mergers of group-like halos are slightly enhanced. A dynamical explanation for this trend is advanced which calls on both tidal effects and interactions between bound halos beyond the virial radii of locally dynamically dominant halos.Comment: 44 pages, 8 figures, Preprint Submitted to Ap

    Dark Matter Halo Mergers I: Dependence on Environment & Redshift Evolution

    Get PDF
    This paper presents a study of the specific merger rate as a function of group membership, local environment, and redshift in a very large, 500h1Mpc500h^{-1} Mpc, cosmological N-body simulation, the \textit{Millennium Simulation}. The goal is to provide environmental diagnostics of major merger populations in order to test simulations against observations and provide further constraints on major merger driven galaxy evolution scenarios. A halo sample is defined using the maximum circular velocity, which is both well defined for subhalos and closely correlated with galaxy luminosity. Subhalos, including the precursors of major mergers, are severely tidally stripped. Major mergers between subhalos are therefore extremely rare. Tidal stripping also suppresses dynamical friction, resulting in long major merger time scales when the more massive halo does not host other subhalos. In contrast, when other subhalos are present major merger time scales are several times shorter. This enhancement is likely due to inelastic unbound collisions between subhalos. Following these results, we predict that major mergers in group environments are dominated by mergers involving the central galaxy, that the specific merger rate is suppressed in groups, and that the frequency of fainter companions is enhanced for mergers and their remnants. We also observe an `assembly bias' in the major merger rate in that mergers of galaxy-like halos are slightly suppressed in overdense environments while mergers of group-like halos are slightly enhanced. A dynamical explanation for this trend is advanced which calls on both tidal effects and interactions between bound halos beyond the virial radii of locally dynamically dominant halos.Comment: 44 pages, 8 figures, Preprint Submitted to Ap

    Two Body Relaxation in Simulated Cosmological Haloes

    Full text link
    This paper aims at quantifying discreetness effects, born of finite particle number, on the dynamics of dark matter haloes forming in the context of cosmological simulations. By generalising the standard calculation of two body relaxation to the case when the size and mass distribution are variable, and parametrising the time evolution using established empirical relations, we find that the dynamics of a million particle halo is noise-dominated within the inner percent of the final virial radius. Far larger particle numbers (~ 10^8) are required for the RMS perturbations to the velocity to drop to the 10 % level there. The radial scaling of the relaxation time is simple and strong: t_relax ~ r^2, implying that numbers >> 10^8 are required to faithfully model the very inner regions; artificial relaxation may thus constitute an important factor, contributing to the contradictory claims concerning the persistence of a power law density cusp to the very centre. The cores of substructure haloes can be many relaxation times old. Since relaxation first causes their expansion before recontraction occurs, it may render them either more difficult or easier to disrupt, depending on their orbital parameters. It may thus modify the characteristics of the subhalo distribution and effects of interactions with the parent. We derive simple closed form formulas for the characteristic relaxation times, as well as for the weak N-scaling reported by Diemand et al. when the main contribution comes from relaxing subhaloes (abridged).Comment: 11 Pages, 7 figs, Monthly Notices styl

    Grid of Lya radiation transfer models for the interpretation of distant galaxies

    Full text link
    Lya is a key diagnostic for numerous observations of distant star-forming galaxies. It's interpretation requires, however, detailed radiation transfer models. We provide an extensive grid of 3D radiation transfer models simulating the Lya and UV continuum radiation transfer in the interstellar medium of star-forming galaxies. We have improved our Monte Carlo MCLya code, and have used it to compute a grid of 6240 radiation transfer models for homogeneous spherical shells containing HI and dust surrounding a central source. The simulations cover a wide range of parameter space. We present the detailed predictions from our models including in particular the Lya escape fraction fesc, the continuum attenuation, and detailed Lya line profiles. The Lya escape fraction is shown to depend strongly on dust content, but also on other parameters (HI column density and radial velocity). The predicted line profiles show a great diversity of morphologies ranging from broad absorption lines to emission lines with complex features. The results from our simulations are distributed in electronic format. Our models should be of use for the interpretation of observations from distant galaxies, for other simulations, and should also serve as an important base for comparison for future, more refined, radiation transfer models.Comment: Accepted for publication in Astronomy & Astrophysics. Results from simulations available at http://obswww.unige.ch/sf

    Galaxy-Mass Correlations on 10 Mpc Scales in the Deep Lens Survey

    Full text link
    We examine the projected correlation of galaxies with mass from small scales (<few hundred kpc) where individual dark matter halos dominate, out to 15 Mpc where correlated large-scale structure dominates. We investigate these profiles as a function of galaxy luminosity and redshift. Selecting 0.8 million galaxies in the Deep Lens Survey, we use photometric redshifts and stacked weak gravitational lensing shear tomography out to radial scales of 1 degree from the centers of foreground galaxies. We detect correlated mass density from multiple halos and large-scale structure at radii larger than the virial radius, and find the first observational evidence for growth in the galaxy-mass correlation on 10 Mpc scales with decreasing redshift and fixed range of luminosity. For a fixed range of redshift, we find a scaling of projected halo mass with rest-frame luminosity similar to previous studies at lower redshift. We control systematic errors in shape measurement and photometric redshift, enforce volume completeness through absolute magnitude cuts, and explore residual sample selection effects via simulations.Comment: 13 pages, 9 figures, re-submitted to ApJ after addressing referee comment

    Constraining halo occupation properties of X-ray AGNs using clustering of Chandra sources in the Bootes survey region

    Full text link
    We present one of the most precise measurement to date of the spatial clustering of X-ray selected AGNs using a sample derived from the Chandra X-ray Observatory survey in the Bootes field. The real-space two-point correlation function over a redshift interval from z=0.17 to z~3 is well described by the power law, xi(r)=(r/r0)^-gamma, for comoving separations r<~20h^-1 Mpc. We find gamma=1.84+-0.12 and r0 consistent with no redshift trend within the sample (varying between r0=5.5+-0.6 h^-1 Mpc for =0.37 and r0=6.9+-1.0 h^-1 Mpc for =1.28). Further, we are able to measure the projections of the two-point correlation function both on the sky plane and in the line of sight. We use these measurements to show that the Chandra/Bootes AGNs are predominantly located at the centers of dark matter halos with the circular velocity Vmax>320 km/s or M_200 > 4.1e12 h^-1 Msun, and tend to avoid satellite galaxies in halos of this or higher mass. The halo occupation properties inferred from the clustering properties of Chandra/Bootes AGNs --- the mass scale of the parent dark matter halos, the lack of significant redshift evolution of the clustering length, and the low satellite fraction --- are broadly consistent with the Hopkins et al. scenario of quasar activity triggered by mergers of similarly-sized galaxies.Comment: Accepted to ApJ. The revision matches the accepted version. The most significant changes include the recalculation of uncertainties using mock catalogs and explicit comparison with the AGN HOD studies based on projected correlation function, w(rp

    Faint extended Lyalpha emission due to star formation at the centre of high-column density QSO absorption systems

    Full text link
    We use detailed Lyalpha radiative transfer calculations to further test the claim of Rauch et al. (2008) that they have detected spatially extended faint Lyalpha emission from the elusive host population of Damped Lyalpha Absorption systems (DLAs) in their recent ultra-deep spectroscopic survey. We investigate the spatial and spectral distribution of Lyalpha emission due to star-formation at the centre of DLAs, and its dependence on the spatial and velocity structure of the gas. Our model simultaneously reproduces the observed properties of DLAs and the faint Lyalpha emitters, including the velocity width and column density distribution of DLAs and the large spatial extent of the emission of the faint emitters. Our modelling confirms previous suggestions that DLAs are predominately hosted by Dark Matter (DM) halos in the mass range 10^{9.5}-10^{12} M_sun, and are thus of significantly lower mass than those inferred for L_* Lyman Break Galaxies (LBGs). Our modelling suggests that DM halos hosting DLAs retain up to 20% of the cosmic baryon fraction in the form of neutral hydrogen, and that star formation at the centre of the halos is responsible for the faint Lyalpha emission. The scattering of a significant fraction of the Lyalpha emission to the observed radii, which can be as large as 50 kpc or more, requires the amplitude of the bulk motions of the gas at the centre of the halos to be moderate. The observed space density and size distribution of the emitters together with the incidence rate of DLAs suggests that the Lyalpha emission due to star formation has a duty cycle of ~ 25%.Comment: 17 pages, 13 figures, Accepted for publication in Monthly Notices of the Royal Astronomical Societ
    corecore